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Abstract: Alzheimer’s disease is a chronic, progressive brain disorder that
leads to a gradual decline in memory and cognitive functions. In this study, N-
VGG16, an advanced deep learning model, is proposed. The model builds upon
the VGG16 architecture, incorporating key enhancements to improve its ability
to classify neurodegenerative conditions. The model processes structural
neuroimaging data using a refined pipeline that applies adaptive histogram
equalization for image enhancement and employs data augmentation
techniques to address class imbalance issues. A major contribution of this work
is the use of gradient-based localization, which allows the model’s predictions
to be linked to specific brain regions affected by the disease. Evaluation using
a standardized dataset showed that the model achieved a high classification
accuracy of 99.69%, successfully distinguishing between different clinical
stages of Alzheimer’s disease. Furthermore, visual interpretation confirmed
that the model consistently focused on brain areas commonly associated with
the disease. These findings highlight the model’s potential to support clinical
decision-making by offering both accurate diagnoses and interpretable insights.

Keywords: Alzheimer's Disease (AD), Deep Learning (DL), Convolutional
Neural Networks (CNNs), Magnetic Resonance Imaging (MRI), Image

Introduction

Alzheimer’s disease is characterized by progressive
memory loss, cognitive decline, and behavioral
changes (Alzheimer's Association, 2019). Symptoms
develop gradually and worsen over time, significantly
impairing daily functioning. Current diagnostic
procedures, ranging from physical and cognitive
assessments to neuroimaging and biomarker analysis,
are often time-consuming, costly, and inaccessible in
standard clinical environments. These challenges are
magnified when detecting early-stage Alzheimer’s,
especially mild cognitive impairment (MCI),
underscoring the urgent need for efficient and
affordable diagnostic tools (Bootun et al., 2025). Early
detection plays a crucial role in enabling timely
interventions and providing support to both patients
and caregivers. In 2019, Alzheimer’s disease affected
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approximately 5.8 million Americans across all age
groups (Alzheimer's Association, 2019). Traditional
diagnostic tools heavily rely on expert interpretation
and often lack consistency in identifying disecase
stages. In response, computer-aided diagnosis (CAD)
systems have emerged as promising technologies,
assisting physicians in making more accurate
assessments and facilitating the development of
reliable and highly accurate prediction models for early
Alzheimer’s detection (Sarakhsi et al., 2022). These
tools are designed to enhance diagnostic decision-
making for radiologists, clinicians, and caregivers. By
optimizing CAD systems, healthcare institutions can
improve operational efficiency, reduce medical costs,
and promote better healthcare outcomes for individuals
(Salehi et al., 2020). Deep learning plays a vital role in
machine learning and draws inspiration from human
cognitive processes, enabling intelligent systems to
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analyze data and solve complex problems (Alsadhan,
2023). Convolutional Neural Networks (CNNs) have
become the gold standard in medical image
interpretation, demonstrating superior performance in
recognizing radiomic patterns and outperforming
traditional methods. CNNs are particularly effective in
classifying medical images and assisting in manual
annotation processes (Mehmood et al., 2020). Recent
advances have shown the effectiveness of transfer
learning in diagnostic image classification tasks. This
research employs the VGGI16 architecture, pretrained
on the ImageNet dataset, as the foundation for
Alzheimer's disease detection. This approach leverages
the model’s proven feature extraction capabilities
while reducing computational demands. The deep
convolutional structure of VGG16 is particularly well-
suited for medical imaging due to its hierarchical
feature learning ability and capacity to capture complex
pathological patterns. Through systematic fine-tuning,
this architecture is adapted to optimize performance for
neuroimaging tasks, addressing the specific challenges
posed by limited medical datasets.

This study presents a novel, tailored approach, N-
VGG16, designed to optimize performance specifically
for neuroimaging tasks. The primary contributions of
this work are as follows:

1. Development of N-VGG16: A tailored variant of the
VGG16 model with 12 fine-tuned convolutional
layers optimized for structural neuroimaging
analysis.

2. Design of a Robust Data Processing Pipeline:
Incorporation of SMOTE-based class balancing
(expanding the dataset from 5,154 to 7,770
samples), Contrast-Limited Adaptive Histogram
Equalization (CLAHE) for MRI enhancement, and
anatomically-aware augmentation techniques.

3. Generation of Clinically Interpretable Outputs:
Utilizing Grad-CAM heatmap visualizations to
highlight affected neuroanatomical regions, thereby
providing transparency for diagnostic decision-
making.

This paper provides a comprehensive overview of
existing diagnostic methods, outlines the data sources,
preprocessing techniques, and the proposed N-VGG16
model architecture. We present the experimental
findings and comparative evaluations and summarize
the key outcomes; suggesting future directions for
enhancing model applicability in clinical settings.

Literature Review

Deep learning evolved as a highly effective method
for improving diagnostic accuracy and patient outcomes.
In recent years, various studies have investigated its

potential applications in medical imaging, particularly in
processing MRI scans to diagnose and classify
Alzheimer's disease. These tests seek to identify modest
structural abnormalities in the brain that may suggest the
existence or progression of the disease. This section
provides a summary of previous studies.

Deep Learning Models for Alzheimer's Disease
Detection

Lietal. (2022) proposed a 3D automated method based
on convolutional neural networks to classify AD and MCI
using structural MRI scans. Their model accuracy of
94.19% for AD classification versus normal control (NC),
and 94.57% for classifying normal control versus normal
control (MCI).

Agarwal et al. (2023) study used the EfficientNet-b0
architecture. On the binary classification task of
distinguishing stable mild cognitive impairment (sMCI)
from Alzheimer's disease, the model achieved a training
accuracy of 95.29% and a test accuracy of 93.10%. For the
ternary classification (AD vs. normal cognitive
impairment (CN) vs. stable MCI), the model achieved a
training accuracy of 85.66% and a test accuracy of
87.38%.

Alsadhan (2023) proposed a computer-aided diagnosis
system based on neuroimaging and deep learning for the
early detection of Alzheimer's disease. The study
compared the ResNet50 and VGG16 architectures for
disease stage classification. Initial experiments using
quadratic classification showed suboptimal performance,
with VGG16 achieving 69% accuracy versus 60% for
ResNet50. After improving the model by simplifying the
tasks to binary classification and comprehensive metric
analysis, VGG16 demonstrated superior performance.

Chakravarth & Shivakanth (2025) proposed a system
that synergistically combines speech pattern analysis and
MRI processing techniques. achieving a classification
accuracy of 94.2%. This system relies on a dual deep
learning approach, using a combined CNN-RNN model to
capture temporal patterns in speech data and Vision
Transformer networks to perform comprehensive spatial
analysis of neuroimaging features.

Sekar et al. (2025) developed an improved Xception-
based early-stage AD using MRI analysis. Their modified
architecture demonstrated diagnostic performance with
96% classification accuracy, as well as 92% precision and
93% recall rates. The researchers used a comprehensive
dataset sourced from Kaggle, covering the full spectrum of
Alzheimer's disease, from non-senile to moderate
dementia.

Deenadayalan & Shantharajah (2025) The study
proposes a combination of EfficientNetBO with dual
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attention mechanisms for the analysis of AD progression
from MRI scans. This hybrid architecture demonstrated
excellent diagnostic performance, achieving a training
accuracy of 99.93% while maintaining strong
generalization with a test accuracy of 93.59%.

Sounthararajah et al. (2025) developed a weighted
graph convolutional neural network (W-GCNN) the stage
AD by analyzing brain connectivity using diffusion
magnetic resonance imaging (DMI). Their framework
successfully distinguished between three clinical
categories model classification accuracy of 91%.

An approach utilizing a Convolutional Neural Network
(CNN) to classify AD using MRI slices across coronal,
sagittal, and axial planes was demonstrated by Ramineni
et al. (2025), achieving 91% accuracy.

A multimodal model combining CNN and LSTM for
Alzheimer’s disease detection was developed by Haq et al.
(2025). This method achieved 92.3% accuracy by
transforming 3D MRI data into 2D features.

Research by El-Aziz et al. (2025) focused on a deep
learning model that enhanced detection from MRI scans
by integrating features from VGGI16, MobileNet, and
InceptionResNetV2, resulting in 97.93% accuracy.

Pre-trained models such as ResNet50, DenseNet121,
and VGG19 were utilized by Islam & Uddin (2025) to
classify the disease into four different stages, achieving
high and consistent accuracies (up to 97.70%).

A 3D CNN model was proposed and evaluated by
Rahman et al. (2025) using the ADNI dataset, achieving
an accuracy of 92.89%.

For multi-stage AD detection, Sharma et al. (2025)
implemented a CNN architecture using structural MRI
data, demonstrating a strong test accuracy of 95.16%,
which outperformed Inception-v3.

A combined ResNet50, Transformer, and LSTM
model was presented by Wu et al. (2025) which processes
MRI images from sagittal, coronal, and axial views. Using
the ADNI dataset, this model achieved 96.92% accuracy.

The method proposed by Alorf (2025) involved
combining the spatial feature extraction capabilities of
CNNs and the contextual understanding of transformers
using both MRI and clinical data, with the model achieving
96% accuracy.

An improved U-Net model was proposed by Kale &
Chavan (2025). Their approach integrated feature
extraction using ISIH, MBP, and Multi Texton, and
achieved a final classification accuracy of 96.3% using an
En-LeCILSTM model.

The deep learning model DHAN-GAN, proposed by

Chen et al. (2025), combines heterogeneous dynamic
attention networks and competitive generative networks to
improve Alzheimer's disease diagnosis. The model
effectively integrates three datasets—structural MRI,
SNPs, and gene expression data—achieving 92.31%
classification accuracy.

Clinical Challenges in Al-Based Alzheimer’s
Detection

While Al diagnostic tools show significant promise,
several barriers hinder clinical adoption. The
generalizability of diagnostic models is significantly
constrained by two factors:

(1) inadequate representation across patient populations in
existing datasets, and

(2) variability in medical imaging acquisition protocols.

Furthermore, the black box nature of many Al systems
creates interpretability issues, undermining -clinician
confidence in these technologies (Schouten et al., 2025).
Addressing these limitations requires coordinated efforts
among Al developers, healthcare professionals, and
regulators to establish standardized validation
frameworks and to develop clinically transparent models.

Explainable Al (XAI) has become a critical solution,
bridging the gap between complex algorithms and clinical
utility. Studies by (Khan et al., 2022) and (Jahan & Khan,
2024) demonstrate that interpretable models not only
maintain high diagnostic accuracy but also provide
decision-making transparency, a crucial factor for clinician
acceptance. Complementary to this, longitudinal datasets
like those proposed by (Gkoumas et al., 2024) enable
comprehensive disease progression tracking, enhancing
predictive capabilities for early intervention.

Materials and Methods

The methodological framework, illustrated in Fig.1,
follows a systematic path for classifying Alzheimer's
disease from neuroimaging data. The workflow begins
with MRI data collection and preparation and progresses
through three critical preprocessing steps: dimensionality
standardization through image resizing, contrast
enhancement via CLAHE optimization, and class
distribution balancing using SMOTE. The processed data
are then fed into a custom N-VGGI16 architecture, a
modified version of the VGG16 network specifically for
three-class neurological classification. To ensure clinical
interpretability, the framework includes Grad-CAM
visualization, which generates anatomical heatmaps that
identify the brain regions most influential in the model's
diagnostic decisions.

2414



Nawal Mohamed Bahy Eldin et al. / Journal of Computer Science 2025, 21 (10): 2412-2422

DOI: 10.3844/jcssp.2025.2412.2422

Dataset i 2

{ Image Resizing J
Data Preprocessing

o amm |

SMOTE
he ’

R S —

e N-VGG16 Y

Fig. 1. Working procedure of the entire proposed model
Dataset

This study employed structural MRI data from the
Alzheimer's Disease Neuroimaging Initiative (ADNI)
database (Naz et al., 2022). The original dataset consisted
of 199 baseline 3D T1-weighted whole-brain scans in
NIfTT format, acquired from a North American cohort of
older adults (55-90 years) with balanced gender
distribution. ~ For  computational  efficiency in
convolutional neural network applications, a preprocessed
2D derivative of this dataset obtained through Kaggle was
utilized. It contained axial plane extractions while
maintaining traceability to the source ADNI scans. The
image processing protocol focused on the medial
temporal lobe structures, particularly the hippocampus,
due to their established relevance in Alzheimer's
pathology. From the volumetric scans, 2D axial slices at
consistent anatomical landmarks were systematically
extracted, generating 5,154 quality-controlled images
stratified across three diagnostic categories (detailed in
Table 1). The complete 3D source data remain accessible
via the ADNI repository.

Preprocessing

The preprocessing phase involved three main steps to

optimize the MRI data for deep learning analysis. First, all
images were resized to a uniform resolution of 224x224
pixels. This uniformity ensures consistent input
dimensions and enhances the convergence of the stable
model. Second, to improve image quality, the Contrast-
Limited Adaptive Histogram Equalization (CLAHE)
algorithm was applied to process the MRI images. This
technique improves local contrast in images by
segmenting them into small 8 x 8-pixel regions, then
adjusting the intensity distribution in each region
individually, with a maximum contrast limit of 2.0 to
prevent noise amplification. This method helps highlight
fine details of brain tissue, especially in the hippocampus
and cerebral cortex, two important biomarkers for
diagnosing Alzheimer's disease. Finally, the synthetic
minority oversampling technique (SMOTE) addressed the
class imbalance by creating synthetic samples of
underrepresented classes, expanding the dataset from
5,154 to 7,770 images. The augmented dataset of 7,770
images was stratified at the patient level to ensure clinical
validity and prevent data leakage. Training set (5,439
images, 70%), validation set (1,165 images, 15%), and
test set (1,166 images, 15%) were used for final unbiased
evaluation.

Table 1. Diagnostic Class Distribution

Class Description No. of Samples
AD Alzheimer’s disease 1124
MCI Mild cognitive impairment 2590
CN Cognitively Normal 1440

Model Architecture (N-VGG16)

This study is based on a transfer learning technique
using the VGGI16 architecture, a well-known
convolutional neural network pre-trained on the ImageNet
corpus, which contains over one million images across
1,000 categories. This architecture, developed by
Simonyan and Zisserman of the Optical Engineering
Group at Oxford University, has proven highly effective in
image classification tasks due to its structural depth and
the use of uniform-sized filters. In this work, the VGG16
convolutional baseline, consisting of 13 convolutional
layers distributed over five blocks, is retained. Each block
is followed by a max-pooling layer that progressively
reduces spatial dimensions while preserving the
underlying features. To ensure model stability, weight
updates for these layers were disabled during training
(freezing) to leverage previously acquired knowledge
while reducing computational requirements. To adapt to
the task of classifying brain MRI images into three stages
of Alzheimer's disease (cognitively normal CN, mild
cognitive impairment MCI, and Alzheimer's disease AD),
the original classification layers were replaced with a
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custom classification header, resulting in the modified
version called N-VGG16.

Global Average Pooling (GAP)

To optimize feature extraction and reduce
computational complexity, a GlobalAveragePooling2D
(GAP) layer was adopted in place of the conventional
flattening operation following the convolutional base. This
approach condenses spatial dimensions into a compact,
translation-invariant feature vector by averaging each
feature map, effectively preserving salient global patterns
associated with brain structural changes while
disregarding redundant localized details. By eliminating
the need for flattening and subsequent dense connections,
GAP inherently reduces the parameter count, thereby
mitigating overfitting risks and enhancing the model's
generalization capability.

Dense Layers and Regularization

The model employs two fully connected (Dense) layers
(256 and 128 units) following the GAP layer, both utilizing
ReLU activation for non-linear feature learning. To
enhance generalization and prevent overfitting, L2
regularization is applied to each layer, constraining weight
magnitudes while maintaining model expressivity. This
architecture achieves an optimal balance between learning
capacity and robustness, particularly important for medical
imaging datasets with limited samples.

Batch Normalization and Dropout

Each Dense layer is followed by a Batch Normalization
layer to standardize and stabilize the learning process,
enhancing training efficiency and convergence. To further
prevent overfitting, a Dropout layer with a rate of 0.25 was
inserted after each batch normalization layer, which
randomly deactivates neurons during training.

Output Layer

A final Dense output layer with three neurons,
corresponding to the three Alzheimer's stages (CN, MCI,
and AD), is added. It employs the softmax activation
function to generate normalized probability scores,
allowing the model to predict the most likely stage of
Alzheimer’s disease for each input MRI scan.

Grad-CAM Integration

To enhance clinical interpretability, the model
incorporates Gradient-weighted Class Activation Mapping
(Grad-CAM), a technique that generates visual
explanations for predictions. This method extracts feature
activations  from the last convolutional layer
(block5 conv3), computes gradient-weighted class-
specific importance, and produces heatmaps that highlight
the most influential brain regions in the model's decision-
making process.

Fine-Tuning Strategy

To allow the model to adapt to the specific
characteristics of Alzheimer's disease pathology visible in
brain, the last 12 layers of the VGG16 base were fine-
tuned. This enabled the model to adjust previously learned
features to the new domain while preserving the
generalizable knowledge gained from pretraining on
ImageNet.

Results and Discussion

Statistical analysis of the confusion matrix, Fig.2
demonstrates that the proposed N-VGG16 model achieved
exceptional performance in classifying Alzheimer's
disease stages, confirming its high efficacy as a diagnostic
aid. The N-VGG16 model attained perfect classification
(100% accuracy) for Alzheimer's cases (AD) with 388
correct identifications and zero errors. For Mild Cognitive
Impairment (MCI), itreached 99.7% accuracy (387 correct
classifications with one misclassification as AD), while
normal cognitive cases (CN) showed 99.7% accuracy (388
correct classifications with one misclassification as MCI).
These outstanding results highlight N-VGG16's precision
in differential diagnosis and its strong potential for clinical
decision support, particularly in distinguishing between
disease stages and early detection of cognitive decline.

350
AD
300

250

MC 200

True label

150

r 100

CN A
50

T
AD MClI CN
Predicted label

Fig. 2. Confusion matrix for classification results

The model showed improvement in its classification
performance throughout the training process, as illustrated
in Fig 3. This figure presents the progression of the
model’s learning based on two key indicators: accuracy
and loss. The consistent decline in loss values for both
training and validation datasets indicates that the model is
effectively reducing prediction errors over time. In
parallel, the gradual rise in accuracy reflects the model’s
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increasing effectiveness in detecting Alzheimer’s disease
cases. Moreover, the close correspondence between
training and validation curves suggests strong
generalization ability and minimal risk of overfitting.
These patterns collectively demonstrate the efficiency of
the adopted model architecture and training approach in
achieving reliable classification results.

Train_Loss & Validation_Loss Train_Accuracy & Validation_Accuracy

Fig. 3. Training Curves

A key technique for assessing how well predictive
models work is the confusion matrix, which shows how
well they can differentiate between various data patterns.
Four primary indicators form the basis of this matrix:
accurate  positive and negative classifications,
classification mistakes, and so on. Several performance
metrics can be computed from these indicators, such as:
overall accuracy, which shows the proportion of correct
classifications; sensitivity, which gauges how well the
model detects positive cases; predictive accuracy, which
establishes the dependability of positive classifications;
and the F1 metric, which strikes a balance between
sensitivity and predictive accuracy to offer a thorough
evaluation of model performance (Ruuska et al., 2018).

Accuracy (ACC), as shown in Equation 1, describes
how accurate a classification model is in making
predictions. It is calculated by comparing.

TP+TN

Accuracy (ACC) = ottt (1)

Recall as given in Equation 2 shows how effective a model
is at detecting the correct positive outcomes.

TP
TP+FN

Recall = )

Predictive accuracy (PPV), according to Equation 3
Predictive accuracy indicates how accurately a model
classifies cases as positive.

TP
TP+FP

Precision (PPV) = 3)

The F1 score, as shown in Equation 4, is used to evaluate
the performance of a model by combining precision and
recall into a single balanced metric.

2+TP
F1 — re = —— 4
Score 2+TP+FP+FN “)

Table 2 shows the performance of the N-VGG16
model in classifying Alzheimer's disease stages. It
achieved perfect accuracy (1.00) across all evaluation
metrics (precision, recall, F1 score) for Alzheimer's
disease (AD) cases, while achieving near-perfect results
(0.996) for MCI and CN cases. The model's overall
accuracy was 0.998 on the validation set of 1,165 samples,
with weighted and overall means of 0.997, confirming the
model's high efficiency and ability to accurately
distinguish between different disease stages.

Table 2. Performance Metrics and Classification Report

Classification Precision Recall F1-Score  Support
AD 1.00 1.00 1.00 388
MCI 0.996 0.996 0.996 388
CN 0.996 0.996 0.996 389
Averages

Macro Avg. 0.997 0.997 0.997 1165
Weighted Avg. 0.997 0.997 0.997 1165
Overall Accuracy - - 0.998 1165

Interpretability of deep learning models is particularly
critical in medical imaging applications, where clinical
trust and decision transparency are paramount. To address
this, Gradient-weighted Class Activation Mapping (Grad-
CAM) has emerged as a powerful visualization tool, first
introduced by Selvaraju et al. (2017) in their seminal work
(Selvaraju et al., 2017). As demonstrated in subsequent
neuroimaging studies (Loveleen et al., 2023) (Fareed et al.,
2023). Grad-CAM acts as a visual explanatory framework
that highlights the discriminative image regions
influencing a model's predictions. In the context of
Alzheimer's  disease  classification, the current
implementation applies Grad-CAM to the final
convolutional layers (block5 conv3) of the N-VGGI16
model. The Grad-CAM-generated heatmaps provide
clinically interpretable visualizations that precisely
localize  disease-specific  neuroanatomical patterns
(Loveleen et al., 2023). The method computes gradient-
weighted activations, producing spatial attention maps that
validate the model's focus areas against -clinical
knowledge. As shown in Fig.4, these visualizations for
AD, MCI, and cognitively normal (CN) subjects not only
enhance model interpretability but also provide clinicians
with verifiable evidence supporting diagnostic predictions
(Fareed et al., 2023). The technique's ability to localize
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decision-relevant features makes it particularly valuable
for validating deep learning systems in medical imaging
domains.

Fig. 4. Grad-CAM algorithm applied to AD, MCI, and CN
images to visualize the results.

Deep learning techniques are rapidly advancing in the
classification of Alzheimer's disease (AD) stages using
MRI, with diverse data preprocessing and sample
amplification approaches, as shown in Table 3. Most

such as horizontal and vertical flipping, rotation, and
geometric transformations.

While preprocessing methods vary from rescaling,
skull removal, and density normalization, the proposed
model introduces an advanced contrast-level enhancement
(CLAHE) technique to enhance subtle details of clinical
relevance. Models used in the literature range from
convolutional neural networks (CNNs) to hybrids, with
significant variations in accuracy (60%-97.93%), as
shown in the table. Many of them face key challenges such
as data imbalance, small samples, and clinical
interpretation difficulties. In contrast, the proposed
improved model (N-VGG16) offers a comprehensive
solution that achieves an exceptional classification
accuracy of 99.69%. This is achieved through a series of
improvements. First, the model's architecture was
improved by replacing traditional layers with advanced
factorial aggregation (GAP) layers and adding dense
neural layers with advanced regularization mechanisms.
Second, integrated strategies were incorporated to interpret
diagnostic decisions using thermal imaging techniques
(Grad-CAM), enabling clinicians to understand the
decision-making logic. Third, Data challenges were

studies rely on publicly available datasets such as ADNI overcome by applying advanced pre-processing
and Kaggle, using traditional amplification techniques techniques.
Table 3. Compared Models
Author Methodology Accuracy Limitations Dataset
The study faced several significant limitations that
This study developed a computer system based affec.ted _t_he model's p erfon_nagce and practical
. VGG16: applicability. The most significant of these
on convolutional neural networks (CNNs) . :
. - accurac challenges was with moderate dementia cases,
models improved by transferring knowledge y . o
. of 69% representing only 1.02% of the total sample (52
(Alsadhan, from previous VGGNet and ResNet models. . .
. . images out of 5,121). This imbalance led to a  Kaggle
2023) The images underwent preprocessing, ResNet50: .2 . )
. . . . 4 . esNetS0:  significant decrease in the model's accuracy when
including format conversion, dimensionality accurac lassifvi ltinle cat . 410 bi
standardization (244x244 pixels), and intensity oy ¢ assiymg mutpic categories compared to binary
o ’ of 60% classification. The model also suffers from a lack
normalization. : . . .
of clear mechanisms for interpreting decisions
(XAI).
The research methodology used a combination The study encountered several —significant
of end-to-end learning and transfer learning training limitations that impacted the model's performance.
methodologies to classify Alzheimer's disease and The most notable of these was the limited sample
(Agarwal et al., using MRI data. Specifically, the study applied 87.38% size (229 AD cases, 229 MCI cases, and 245 CN ADNI
2023) the EfficientNet-BO architecture trained on a  accuracy  cases). This shortcoming led to a significant
dataset of 458 T1-weighted brain MRL and decrease in the model's accuracy. The model also
88.00% lacks clear mechanisms for interpreting decisions
(XAI).
(K etal., 2025) This research presents an improved deep The study faces some limitations that affect its
learning framework based on Xception. The results and practical applications. First, the dataset
research used a neuroimaging dataset spanning suffers from a significant imbalance in distribution
four cognitive stages. Before training the 96% across different disease categories, and the model ~ Kaggle

model, all MRI scans were preprocessed.

has not been tested on preclinical cases. A lack of
interpretable XAl techniques to explain the
model's decisions.
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Author Methodology Accuracy Limitations Dataset
This study used the EfficientNetBO model T.h c n_lodel demonstra_ted dl.f ﬁculty_ n
. . . differentiating between intermediate disease
enhanced with dual attention mechanisms to stages (MiD and MoD) due to overlappin
(Deenadayalan extract features from three different levels. im§ ing features. despite emploving att eI;l Iiim%
& Shantharajah, SMOTE data balance techniques were also  93.59% m %flm th .m dI;' limitpd ?ntg retabili Kaggle
2025) incorporated to address the problem of class JCCIAMSINS, he moders ed mnterpretability
- . hinders its clinical adoption, as decision-making
misalignment. The images underwent advanced P
. processes remain inadequately transparent for
processing. ) "
medical practitioners.
(Sounthararajah  This study adopted a methodology for
et al., 2025) analyzing structural brain networks using the
W-GCNN (Weighted Graph Convolutional Although the model demonstrated accurate
Network) model to distinguish between CN, 91% classification performance, it lacks interpretable ADNI
MCI, and AD. The research sample included 0 explainable AI (XAI) techniques to clarify its
358 participants. MRI data were processed, and decision-making process.
the proposed model relied on four graph
convolutional layers for feature extraction.
(Ramineni etal., This study developed a CNN-based framework
2025) for Alzheimer's disease classification using
structural MRI data. T1-weighted images were
processed through a multi-planar analysis Although the model demonstrated accurate
pipeline, where each volumetric scan was 91% classification performance, it lacks interpretable ADNI
segmented into coronal, sagittal, and axial plane ’ explainable Al (XAI) techniques to clarify its
slices. These orthogonal views were then decision-making process.
systematically processed through the CNN
architecture to  capture = complementary
neuroanatomical features.
(Haq et al., This study developed a hybrid model
2025) combining convolutional neural networks
(CNNs) and long-short-term memory (LSTM) Although the model demonstrated accurate
networks. The research relied on 505 scans of 92.3% classification performance, it lacks interpretable ADNI-1
Alzheimer's disease (AD) patients (135), mild =70 explainable Al (XAI) techniques to clarify its
cognitive impairment (MCI) patients (215), and decision-making process.
normal individuals (155). The 3D images were
converted into 2D slices.
(El-Aziz et al., . . Although the model has high accuracy, it suffers
This research presents a deep learning .
2025) . . ST from data imbalance (only 64 samples for
framework for diagnosing Alzheimer's disease dvanced st mpared to 3.200 samples for
from MRI. It employs VGG16, MobileNet, and  97.93% advanced stages compared 1o 5, sampies 10 Kaggle
. . normal stages). Second, the model lacks clear
InceptionResNetV2 were used with an . . .
. . . . mechanisms to explain the basis for case
improved weighted fusion mechanism. P
classification.
(Islam & Uddin, This study faces several methodological
2025) This study developed a methodology for limitations: First, the model lacks interpretable AL
detecting the four stages of AD using transfer (XAI) mechanisms, which limits clinicians' ability
learning techniques. The research relied on 97.70% to understand the rationale behind the diagnostic Kaoole
three pre-trained neural network models U decisions made by the model. Second, there is 28
(ResNet50, DenseNetl21, and VGG19) significant variation in the sample distribution
optimized for the medical classification task. across categories, with only 64 cases of moderate
dementia compared to a total of 3,200 cases.
(Rahman et al., In this study, a 3D MRI-based model was
2025) designed to detect Alzheimer's disease. The
research relied on a dataset comprising 2,182 ] ) )
scans of 221 patients, divided into three main This study faces two major challenges: First, the
categories: CN, MCI, and AD. A series of imbalance between classes, with Alzheimer's
advanced data processing processes were disease (453) patients sampled compared to mild
84.05% cognitive impairment (981), which may affect the =~ ADNI

applied, including image refinement of non-
brain tissues, standardization of image anatomy
parameters, image quality enhancement using
Gaussian filters, and careful selection of the
most diagnostically significant segments.

model's accuracy in classifying underrepresented
cases. Second, the lack of analysis to interpret the
model's decisions.
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Author Methodology Accuracy Limitations Dataset
A hybrid deep learning framework that
combines automated classification with This study overcomes the major limitations of
clinically interpretable visualization for previous research by developing an integrated
Alzheimer's disease diagnosis is developed. hybrid model that combines high diagnostic
Two key architectural innovations to the accuracy with clinical interpretability. This
VGG16 baseline (creating N-VGG16) were approach relies on several innovative strategies:
introduced: (1) replacement of traditional (1) addressing the data imbalance issue through
pooling with generalized average pooling artificial augmentation techniques, (2) enhancing
(GAP) to preserve spatial relationships in interpretability by incorporating Grad-CAM
neuroimaging data, and (2) integration of Grad- mechanisms to generate heat maps that highlight
Proposed model CAM to generate intuitive heatmaps 99.68% key diagnostic regions, and (3) achieving a high Kaggle

highlighting disease-relevant brain regions. For
optimal performance, comprehensive
preprocessing pipeline including CLAHE-
based contrast enhancement and addressed
class imbalance through SMOTE oversampling
was implemented. The model was trained with
early stopping, achieving both high diagnostic
accuracy and clinically meaningful
explanations through pathology-aligned visual
biomarkers.

accuracy of 99.6% thanks to structural
improvements in the enhanced N-VGG16 model.
The model also demonstrated practical clinical
applicability with reasonable computational
requirements. These comprehensive
improvements provide an integrated solution that
exceeds the limitations of traditional models in
terms of accuracy, interpretability, and clinical
applicability.

Conclusion

This study presents a model for Alzheimer's disease
(AD) staging using magnetic resonance imaging (MRI).
The proposed improved N-VGG16 model, enhanced with
transfer learning capabilities, demonstrates exceptional
diagnostic reliability with a test accuracy of 99.69%,
supported by robust training (99.86%) and validation
(99.98%) results. Grad-CAM imaging ensures the clinical
interpretability of the model, which accurately identifies
known biomarkers of AD, including hippocampal atrophy,
with remarkable anatomical alignment. By combining
high diagnostic accuracy with transparent decision-
making processes, this framework represents a significant
advance in neuroscience. Future applications include
integrating multimodal data (such as PET and
cerebrospinal fluid biomarkers) and optimizing the model
for use on portable medical devices.
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