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Abstract: Alzheimer’s disease is a chronic, progressive brain disorder that 

leads to a gradual decline in memory and cognitive functions. In this study, N-

VGG16, an advanced deep learning model, is proposed. The model builds upon 

the VGG16 architecture, incorporating key enhancements to improve its ability 

to classify neurodegenerative conditions. The model processes structural 

neuroimaging data using a refined pipeline that applies adaptive histogram 

equalization for image enhancement and employs data augmentation 

techniques to address class imbalance issues. A major contribution of this work 

is the use of gradient-based localization, which allows the model’s predictions 

to be linked to specific brain regions affected by the disease. Evaluation using 

a standardized dataset showed that the model achieved a high classification 

accuracy of 99.69%, successfully distinguishing between different clinical 

stages of Alzheimer’s disease. Furthermore, visual interpretation confirmed 

that the model consistently focused on brain areas commonly associated with 

the disease. These findings highlight the model’s potential to support clinical 

decision-making by offering both accurate diagnoses and interpretable insights. 

Keywords: Alzheimer's Disease (AD), Deep Learning (DL), Convolutional 

Neural Networks (CNNs), Magnetic Resonance Imaging (MRI), Image 

Preprocessing, Transfer Learning 

 

Introduction  

Alzheimer’s disease is characterized by progressive 

memory loss, cognitive decline, and behavioral 

changes (Alzheimer's Association, 2019). Symptoms 

develop gradually and worsen over time, significantly 

impairing daily functioning. Current diagnostic 

procedures, ranging from physical and cognitive 

assessments to neuroimaging and biomarker analysis, 

are often time-consuming, costly, and inaccessible in 

standard clinical environments. These challenges are 

magnified when detecting early-stage Alzheimer’s, 

especially mild cognitive impairment (MCI), 

underscoring the urgent need for efficient and 

affordable diagnostic tools (Bootun et al., 2025). Early 

detection plays a crucial role in enabling timely 

interventions and providing support to both patients 

and caregivers. In 2019, Alzheimer’s disease affected 

approximately 5.8 million Americans across all age 

groups (Alzheimer's Association, 2019). Traditional 

diagnostic tools heavily rely on expert interpretation 

and often lack consistency in identifying disease 

stages. In response, computer-aided diagnosis (CAD) 

systems have emerged as promising technologies, 

assisting physicians in making more accurate 

assessments and facilitating the development of 

reliable and highly accurate prediction models for early 

Alzheimer’s detection (Sarakhsi et al., 2022). These 

tools are designed to enhance diagnostic decision-

making for radiologists, clinicians, and caregivers. By 

optimizing CAD systems, healthcare institutions can 

improve operational efficiency, reduce medical costs, 

and promote better healthcare outcomes for individuals 

(Salehi et al., 2020). Deep learning plays a vital role in 

machine learning and draws inspiration from human 

cognitive processes, enabling intelligent systems to 
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analyze data and solve complex problems (Alsadhan, 

2023). Convolutional Neural Networks (CNNs) have 

become the gold standard in medical image 

interpretation, demonstrating superior performance in 

recognizing radiomic patterns and outperforming 

traditional methods. CNNs are particularly effective in 

classifying medical images and assisting in manual 

annotation processes (Mehmood et al., 2020). Recent 

advances have shown the effectiveness of transfer 

learning in diagnostic image classification tasks. This 

research employs the VGG16 architecture, pretrained 

on the ImageNet dataset, as the foundation for 

Alzheimer's disease detection. This approach leverages 

the model’s proven feature extraction capabilities 

while reducing computational demands. The deep 

convolutional structure of VGG16 is particularly well-

suited for medical imaging due to its hierarchical 

feature learning ability and capacity to capture complex 

pathological patterns. Through systematic fine-tuning, 

this architecture is adapted to optimize performance for 

neuroimaging tasks, addressing the specific challenges 

posed by limited medical datasets.  

This study presents a novel, tailored approach, N-

VGG16, designed to optimize performance specifically 

for neuroimaging tasks. The primary contributions of 

this work are as follows: 

1. Development of N-VGG16: A tailored variant of the 

VGG16 model with 12 fine-tuned convolutional 

layers optimized for structural neuroimaging 

analysis. 

2. Design of a Robust Data Processing Pipeline: 

Incorporation of SMOTE-based class balancing 

(expanding the dataset from 5,154 to 7,770 

samples), Contrast-Limited Adaptive Histogram 

Equalization (CLAHE) for MRI enhancement, and 

anatomically-aware augmentation techniques. 

3. Generation of Clinically Interpretable Outputs: 

Utilizing Grad-CAM heatmap visualizations to 

highlight affected neuroanatomical regions, thereby 

providing transparency for diagnostic decision-

making. 

This paper provides a comprehensive overview of 

existing diagnostic methods, outlines the data sources, 

preprocessing techniques, and the proposed N-VGG16 

model architecture. We present the experimental 

findings and comparative evaluations and summarize 

the key outcomes; suggesting future directions for 

enhancing model applicability in clinical settings. 

Literature Review 

Deep learning evolved as a highly effective method 

for improving diagnostic accuracy and patient outcomes. 

In recent years, various studies have investigated its 

potential applications in medical imaging, particularly in 

processing MRI scans to diagnose and classify 

Alzheimer's disease. These tests seek to identify modest 

structural abnormalities in the brain that may suggest the 

existence or progression of the disease. This section 

provides a summary of previous studies. 

Deep Learning Models for Alzheimer's Disease 

Detection 

Li et al. (2022) proposed a 3D automated method based 

on convolutional neural networks to classify AD and MCI 

using structural MRI scans. Their model accuracy of 

94.19% for AD classification versus normal control (NC), 

and 94.57% for classifying normal control versus normal 

control (MCI). 

Agarwal et al. (2023) study used the EfficientNet-b0 

architecture. On the binary classification task of 

distinguishing stable mild cognitive impairment (sMCI) 

from Alzheimer's disease, the model achieved a training 

accuracy of 95.29% and a test accuracy of 93.10%. For the 

ternary classification (AD vs. normal cognitive 

impairment (CN) vs. stable MCI), the model achieved a 

training accuracy of 85.66% and a test accuracy of 

87.38%. 

Alsadhan (2023)  proposed a computer-aided diagnosis 

system based on neuroimaging and deep learning for the 

early detection of Alzheimer's disease. The study 

compared the ResNet50 and VGG16 architectures for 

disease stage classification. Initial experiments using 

quadratic classification showed suboptimal performance, 

with VGG16 achieving 69% accuracy versus 60% for 

ResNet50. After improving the model by simplifying the 

tasks to binary classification and comprehensive metric 

analysis, VGG16 demonstrated superior performance.   

Chakravarth & Shivakanth )2025)  proposed a system 

that synergistically combines speech pattern analysis and 

MRI processing techniques. achieving a classification 

accuracy of 94.2%. This system relies on a dual deep 

learning approach, using a combined CNN-RNN model to 

capture temporal patterns in speech data and Vision 

Transformer networks to perform comprehensive spatial 

analysis of neuroimaging features. 

 Sekar et al. (2025) developed an improved Xception-

based early-stage AD using MRI analysis. Their modified 

architecture demonstrated diagnostic performance with 

96% classification accuracy, as well as 92% precision and 

93% recall rates. The researchers used a comprehensive 

dataset sourced from Kaggle, covering the full spectrum of 

Alzheimer's disease, from non-senile to moderate 

dementia. 

 Deenadayalan & Shantharajah (2025) The study 

proposes a combination of EfficientNetB0 with dual 
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attention mechanisms for the analysis of AD progression 

from MRI scans. This hybrid architecture demonstrated 

excellent diagnostic performance, achieving a training 

accuracy of 99.93% while maintaining strong 

generalization with a test accuracy of 93.59%. 

 Sounthararajah et al. (2025) developed a weighted 

graph convolutional neural network (W-GCNN) the stage 

AD by analyzing brain connectivity using diffusion 

magnetic resonance imaging (DMI). Their framework 

successfully distinguished between three clinical 

categories model classification accuracy of 91%. 

An approach utilizing a Convolutional Neural Network 

(CNN) to classify AD using MRI slices across coronal, 

sagittal, and axial planes was demonstrated by Ramineni 

et al. (2025), achieving 91% accuracy. 

A multimodal model combining CNN and LSTM for 

Alzheimer’s disease detection was developed by Haq et al. 

(2025). This method achieved 92.3% accuracy by 

transforming 3D MRI data into 2D features. 

Research by El-Aziz et al. (2025) focused on a deep 

learning model that enhanced detection from MRI scans 

by integrating features from VGG16, MobileNet, and 

InceptionResNetV2, resulting in 97.93% accuracy. 

Pre-trained models such as ResNet50, DenseNet121, 

and VGG19 were utilized by Islam & Uddin (2025) to 

classify the disease into four different stages, achieving 

high and consistent accuracies (up to 97.70%). 

A 3D CNN model was proposed and evaluated by 

Rahman et al. (2025) using the ADNI dataset, achieving 

an accuracy of 92.89%. 

For multi-stage AD detection, Sharma et al. (2025) 

implemented a CNN architecture using structural MRI 

data, demonstrating a strong test accuracy of 95.16%, 

which outperformed Inception-v3. 

A combined ResNet50, Transformer, and LSTM 

model was presented by Wu et al. (2025) which processes 

MRI images from sagittal, coronal, and axial views. Using 

the ADNI dataset, this model achieved 96.92% accuracy. 

The method proposed by Alorf (2025) involved 

combining the spatial feature extraction capabilities of 

CNNs and the contextual understanding of transformers 

using both MRI and clinical data, with the model achieving 

96% accuracy. 

An improved U-Net model was proposed by Kale & 

Chavan (2025). Their approach integrated feature 

extraction using ISIH, MBP, and Multi Texton, and 

achieved a final classification accuracy of 96.3% using an 

En-LeCILSTM model. 

The deep learning model DHAN-GAN, proposed by 

Chen et al. (2025), combines heterogeneous dynamic 

attention networks and competitive generative networks to 

improve Alzheimer's disease diagnosis. The model 

effectively integrates three datasets—structural MRI, 

SNPs, and gene expression data—achieving 92.31% 

classification accuracy. 

Clinical Challenges in AI-Based Alzheimer’s 

Detection 

While AI diagnostic tools show significant promise, 

several barriers hinder clinical adoption. The 

generalizability of diagnostic models is significantly 

constrained by two factors:  

(1) inadequate representation across patient populations in 

existing datasets, and  

(2) variability in medical imaging acquisition protocols. 

Furthermore, the black box nature of many AI systems 

creates interpretability issues, undermining clinician 

confidence in these technologies (Schouten et al., 2025). 

Addressing these limitations requires coordinated efforts 

among AI developers, healthcare professionals, and 

regulators to establish standardized validation 

frameworks and to develop clinically transparent models. 

Explainable AI (XAI) has become a  critical solution, 

bridging the gap between complex algorithms and clinical 

utility. Studies by (Khan et al., 2022) and (Jahan & Khan, 

2024) demonstrate that interpretable models not only 

maintain high diagnostic accuracy but also provide 

decision-making transparency, a crucial factor for clinician 

acceptance. Complementary to this, longitudinal datasets 

like those proposed by (Gkoumas et al., 2024) enable 

comprehensive disease progression tracking, enhancing 

predictive capabilities for early intervention. 

Materials and Methods 

The methodological framework, illustrated in Fig.1, 

follows a systematic path for classifying Alzheimer's 

disease from neuroimaging data. The workflow begins 

with MRI data collection and preparation and progresses 

through three critical preprocessing steps: dimensionality 

standardization through image resizing, contrast 

enhancement via CLAHE optimization, and class 

distribution balancing using SMOTE. The processed data 

are then fed into a custom N-VGG16 architecture, a 

modified version of the VGG16 network specifically for 

three-class neurological classification. To ensure clinical 

interpretability, the framework includes Grad-CAM 

visualization, which generates anatomical heatmaps that 

identify the brain regions most influential in the model's 

diagnostic decisions. 
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Fig. 1. Working procedure of the entire proposed model 

Dataset 

This study employed structural MRI data from the 

Alzheimer's Disease Neuroimaging Initiative (ADNI) 

database (Naz et al., 2022). The original dataset consisted 

of 199 baseline 3D T1-weighted whole-brain scans in 

NIfTI format, acquired from a North American cohort of 

older adults (55-90 years) with balanced gender 

distribution. For computational efficiency in 

convolutional neural network applications, a preprocessed 

2D derivative of this dataset obtained through Kaggle was 

utilized. It contained axial plane extractions while 

maintaining traceability to the source ADNI scans. The 

image processing protocol focused on the medial 

temporal lobe structures, particularly the hippocampus, 

due to their established relevance in Alzheimer's 

pathology. From the volumetric scans, 2D axial slices at 

consistent anatomical landmarks were systematically 

extracted, generating 5,154 quality-controlled images 

stratified across three diagnostic categories (detailed in 

Table 1). The complete 3D source data remain accessible 

via the ADNI repository. 

Preprocessing 

The preprocessing phase involved three main steps to 

optimize the MRI data for deep learning analysis. First, all 

images were resized to a uniform resolution of 224×224 

pixels. This uniformity ensures consistent input 

dimensions and enhances the convergence of the stable 

model. Second, to improve image quality, the Contrast-

Limited Adaptive Histogram Equalization (CLAHE) 

algorithm was applied to process the MRI images. This 

technique improves local contrast in images by 

segmenting them into small 8 x 8-pixel regions, then 

adjusting the intensity distribution in each region 

individually, with a maximum contrast limit of 2.0 to 

prevent noise amplification. This method helps highlight 

fine details of brain tissue, especially in the hippocampus 

and cerebral cortex, two important biomarkers for 

diagnosing Alzheimer's disease. Finally, the synthetic 

minority oversampling technique (SMOTE) addressed the 

class imbalance by creating synthetic samples of 

underrepresented classes, expanding the dataset from 

5,154 to 7,770 images. The augmented dataset of 7,770 

images was stratified at the patient level to ensure clinical 

validity and prevent data leakage. Training set (5,439 

images, 70%), validation set (1,165 images, 15%), and 

test set (1,166 images, 15%) were used for final unbiased 

evaluation. 

Table 1. Diagnostic Class Distribution 

Class Description No. of Samples 

AD Alzheimer’s disease 1124 

MCI Mild cognitive impairment 2590 

CN Cognitively Normal 1440 

Model Architecture (N-VGG16) 

This study is based on a transfer learning technique 

using the VGG16 architecture, a well-known 

convolutional neural network pre-trained on the ImageNet 

corpus, which contains over one million images across 

1,000 categories. This architecture, developed by 

Simonyan and Zisserman of the Optical Engineering 

Group at Oxford University, has proven highly effective in 

image classification tasks due to its structural depth and 

the use of uniform-sized filters. In this work, the VGG16 

convolutional baseline, consisting of 13 convolutional 

layers distributed over five blocks, is retained. Each block 

is followed by a max-pooling layer that progressively 

reduces spatial dimensions while preserving the 

underlying features. To ensure model stability, weight 

updates for these layers were disabled during training 

(freezing) to leverage previously acquired knowledge 

while reducing computational requirements. To adapt to 

the task of classifying brain MRI images into three stages 

of Alzheimer's disease (cognitively normal CN, mild 

cognitive impairment MCI, and Alzheimer's disease AD), 

the original classification layers were replaced with a 
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custom classification header, resulting in the modified 

version called N-VGG16. 

Global Average Pooling (GAP) 

To optimize feature extraction and reduce 

computational complexity, a GlobalAveragePooling2D 

(GAP) layer was adopted in place of the conventional 

flattening operation following the convolutional base. This 

approach condenses spatial dimensions into a compact, 

translation-invariant feature vector by averaging each 

feature map, effectively preserving salient global patterns 

associated with brain structural changes while 

disregarding redundant localized details. By eliminating 

the need for flattening and subsequent dense connections, 

GAP inherently reduces the parameter count, thereby 

mitigating overfitting risks and enhancing the model's 

generalization capability. 

Dense Layers and Regularization 

The model employs two fully connected (Dense) layers 

(256 and 128 units) following the GAP layer, both utilizing 

ReLU activation for non-linear feature learning. To 

enhance generalization and prevent overfitting, L2 

regularization is applied to each layer, constraining weight 

magnitudes while maintaining model expressivity. This 

architecture achieves an optimal balance between learning 

capacity and robustness, particularly important for medical 

imaging datasets with limited samples. 

Batch Normalization and Dropout 

Each Dense layer is followed by a Batch Normalization 

layer to standardize and stabilize the learning process, 

enhancing training efficiency and convergence. To further 

prevent overfitting, a Dropout layer with a rate of 0.25 was 

inserted after each batch normalization layer, which 

randomly deactivates neurons during training. 

Output Layer 

A final Dense output layer with three neurons, 

corresponding to the three Alzheimer's stages (CN, MCI, 

and AD), is added. It employs the softmax activation 

function to generate normalized probability scores, 

allowing the model to predict the most likely stage of 

Alzheimer’s disease for each input MRI scan. 

Grad-CAM Integration 

To enhance clinical interpretability, the model 

incorporates Gradient-weighted Class Activation Mapping 

(Grad-CAM), a technique that generates visual 

explanations for predictions. This method extracts feature 

activations from the last convolutional layer 

(block5_conv3), computes gradient-weighted class-

specific importance, and produces heatmaps that highlight 
the most influential brain regions in the model's decision-

making process.  

Fine-Tuning Strategy  

To allow the model to adapt to the specific 

characteristics of Alzheimer's disease pathology visible in 

brain, the last 12 layers of the VGG16 base were fine-

tuned. This enabled the model to adjust previously learned 

features to the new domain while preserving the 

generalizable knowledge gained from pretraining on 

ImageNet. 

Results and Discussion 

Statistical analysis of the confusion matrix, Fig.2 

demonstrates that the proposed N-VGG16 model achieved 

exceptional performance in classifying Alzheimer's 

disease stages, confirming its high efficacy as a diagnostic 

aid. The N-VGG16 model attained perfect classification 

(100% accuracy) for Alzheimer's cases (AD) with 388 

correct identifications and zero errors. For Mild Cognitive 

Impairment (MCI), it reached 99.7% accuracy (387 correct 

classifications with one misclassification as AD), while 

normal cognitive cases (CN) showed 99.7% accuracy (388 

correct classifications with one misclassification as MCI). 

These outstanding results highlight N-VGG16's precision 

in differential diagnosis and its strong potential for clinical 

decision support, particularly in distinguishing between 

disease stages and early detection of cognitive decline. 

 

Fig. 2. Confusion matrix for classification results 

The model showed improvement in its classification 

performance throughout the training process, as illustrated 

in Fig 3. This figure presents the progression of the 

model’s learning based on two key indicators: accuracy 

and loss. The consistent decline in loss values for both 

training and validation datasets indicates that the model is 

effectively reducing prediction errors over time. In 

parallel, the gradual rise in accuracy reflects the model’s 
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increasing effectiveness in detecting Alzheimer’s disease 

cases. Moreover, the close correspondence between 

training and validation curves suggests strong 

generalization ability and minimal risk of overfitting. 

These patterns collectively demonstrate the efficiency of 

the adopted model architecture and training approach in 

achieving reliable classification results. 

 

Fig. 3. Training Curves 

A key technique for assessing how well predictive 

models work is the confusion matrix, which shows how 

well they can differentiate between various data patterns. 

Four primary indicators form the basis of this matrix: 

accurate positive and negative classifications, 

classification mistakes, and so on. Several performance 

metrics can be computed from these indicators, such as: 

overall accuracy, which shows the proportion of correct 

classifications; sensitivity, which gauges how well the 

model detects positive cases; predictive accuracy, which 

establishes the dependability of positive classifications; 

and the F1 metric, which strikes a balance between 

sensitivity and predictive accuracy to offer a thorough 

evaluation of model performance (Ruuska et al., 2018). 

Accuracy (ACC), as shown in Equation 1, describes 

how accurate a classification model is in making 

predictions. It is calculated by comparing. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =
TP+TN

TP+TN+FP+FN
  (1) 

Recall as given in Equation 2 shows how effective a model 

is at detecting the correct positive outcomes.  

Recall =
TP

TP+FN
  (2) 

Predictive accuracy (PPV), according to Equation 3 

Predictive accuracy indicates how accurately a model 

classifies cases as positive.  

Precision (PPV) =
TP

TP+FP
  (3) 

The F1 score, as shown in Equation 4, is used to evaluate 

the performance of a model by combining precision and 

recall into a single balanced metric.  

F1 − score =
2∗TP

2∗TP+FP+FN
  (4) 

Table 2 shows the performance of the N-VGG16 

model in classifying Alzheimer's disease stages. It 

achieved perfect accuracy (1.00) across all evaluation 

metrics (precision, recall, F1 score) for Alzheimer's 

disease (AD) cases, while achieving near-perfect results 

(0.996) for MCI and CN cases. The model's overall 

accuracy was 0.998 on the validation set of 1,165 samples, 

with weighted and overall means of 0.997, confirming the 

model's high efficiency and ability to accurately 

distinguish between different disease stages. 

Table 2. Performance Metrics and Classification Report 

Interpretability of deep learning models is particularly 

critical in medical imaging applications, where clinical 

trust and decision transparency are paramount. To address 

this, Gradient-weighted Class Activation Mapping (Grad-

CAM) has emerged as a powerful visualization tool, first 

introduced by Selvaraju et al. (2017) in their seminal work 

(Selvaraju et al., 2017). As demonstrated in subsequent 

neuroimaging studies (Loveleen et al., 2023) (Fareed et al., 

2023). Grad-CAM acts as a visual explanatory framework 

that highlights the discriminative image regions 

influencing a model's predictions. In the context of 

Alzheimer's disease classification, the current 

implementation applies Grad-CAM to the final 

convolutional layers (block5_conv3) of the N-VGG16 

model.  The Grad-CAM-generated heatmaps provide 

clinically interpretable visualizations that precisely 

localize disease-specific neuroanatomical patterns 

(Loveleen et al., 2023). The method computes gradient-

weighted activations, producing spatial attention maps that 

validate the model's focus areas against clinical 

knowledge. As shown in Fig.4, these visualizations for 

AD, MCI, and cognitively normal (CN) subjects not only 

enhance model interpretability but also provide clinicians 

with verifiable evidence supporting diagnostic predictions 

(Fareed et al., 2023). The technique's ability to localize 

Classification  Precision Recall F1-Score Support 

AD 1.00 1.00 1.00 388 

MCI 0.996 0.996 0.996 388 

CN 0.996 0.996 0.996 389 

Averages     

Macro Avg. 0.997 0.997 0.997 1165 

Weighted Avg. 0.997 0.997 0.997 1165 

Overall Accuracy - - 0.998 1165 
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decision-relevant features makes it particularly valuable 

for validating deep learning systems in medical imaging 

domains. 

 

Fig. 4. Grad-CAM algorithm applied to AD, MCI, and CN 

images to visualize the results. 

Deep learning techniques are rapidly advancing in the 

classification of Alzheimer's disease (AD) stages using 

MRI, with diverse data preprocessing and sample 

amplification approaches, as shown in Table 3. Most 

studies rely on publicly available datasets such as ADNI 

and Kaggle, using traditional amplification techniques 

such as horizontal and vertical flipping, rotation, and 

geometric transformations.   

While preprocessing methods vary from rescaling, 

skull removal, and density normalization, the proposed 

model introduces an advanced contrast-level enhancement 

(CLAHE) technique to enhance subtle details of clinical 

relevance. Models used in the literature range from 

convolutional neural networks (CNNs) to hybrids, with 

significant variations in accuracy (60%–97.93%), as 

shown in the table. Many of them face key challenges such 

as data imbalance, small samples, and clinical 

interpretation difficulties. In contrast, the proposed 

improved model (N-VGG16) offers a comprehensive 

solution that achieves an exceptional classification 

accuracy of 99.69%. This is achieved through a series of 

improvements. First, the model's architecture was 

improved by replacing traditional layers with advanced 

factorial aggregation (GAP) layers and adding dense 

neural layers with advanced regularization mechanisms. 

Second, integrated strategies were incorporated to interpret 

diagnostic decisions using thermal imaging techniques 

(Grad-CAM), enabling clinicians to understand the 

decision-making logic. Third, Data challenges were 

overcome by applying advanced pre-processing 

techniques. 

 

Table 3. Compared Models 

Author Methodology Accuracy Limitations Dataset 

(Alsadhan, 
2023) 

This study developed a computer system based 
on convolutional neural networks (CNNs) 
models improved by transferring knowledge 
from previous VGGNet and ResNet models. 
The images underwent preprocessing, 
including format conversion, dimensionality 
standardization (244×244 pixels), and intensity 
normalization.  

VGG16: 
accuracy 
of 69% 

ResNet50: 
accuracy  
of 60% 

The study faced several significant limitations that 
affected the model's performance and practical 
applicability. The most significant of these 
challenges was with moderate dementia cases, 
representing only 1.02% of the total sample (52 
images out of 5,121). This imbalance led to a 
significant decrease in the model's accuracy when 
classifying multiple categories compared to binary 
classification. The model also suffers from a lack 
of clear mechanisms for interpreting decisions 
(XAI) . 

Kaggle 

(Agarwal et al., 
2023) 

The research methodology used a combination 
of end-to-end learning and transfer learning 
methodologies to classify Alzheimer's disease 
using MRI data. Specifically, the study applied 
the EfficientNet-B0 architecture trained on a 
dataset of 458 T1-weighted brain MRI . 

training 
and 

87.38% 
accuracy 

and 
88.00% 

The study encountered several significant 
limitations that impacted the model's performance. 
The most notable of these was the limited sample 
size (229 AD cases, 229 MCI cases, and 245 CN 
cases). This shortcoming led to a significant 
decrease in the model's accuracy. The model also 
lacks clear mechanisms for interpreting decisions 
(XAI). 

ADNI 

(K et al., 2025) This research presents an improved deep 
learning framework based on Xception. The 
research used a neuroimaging dataset spanning 
four cognitive stages. Before training the 
model, all MRI scans were preprocessed. 

96% 

The study faces some limitations that affect its 
results and practical applications. First, the dataset 
suffers from a significant imbalance in distribution 
across different disease categories, and the model 
has not been tested on preclinical cases. A lack of 
interpretable XAI techniques to explain the 
model's decisions. 

Kaggle 
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Author Methodology Accuracy Limitations Dataset 

(Deenadayalan 
& Shantharajah, 
2025) 

This study used the EfficientNetB0 model 
enhanced with dual attention mechanisms to 
extract features from three different levels. 
SMOTE data balance techniques were also 
incorporated to address the problem of class 
misalignment. The images underwent advanced 
processing. 

93.59% 

The model demonstrated difficulty in 
differentiating between intermediate disease 
stages (MiD and MoD) due to overlapping 
imaging features. despite employing attention 
mechanisms, the model's limited interpretability 
hinders its clinical adoption, as decision-making 
processes remain inadequately transparent for 
medical practitioners. 

Kaggle 

(Sounthararajah 
et al., 2025) 

This study adopted a methodology for 
analyzing structural brain networks using the 
W-GCNN (Weighted Graph Convolutional 
Network) model to distinguish between CN, 
MCI, and AD. The research sample included 
358 participants. MRI data were processed, and 
the proposed model relied on four graph 
convolutional layers for feature extraction. 

91% 

Although the model demonstrated accurate 
classification performance, it lacks interpretable 
explainable AI (XAI) techniques to clarify its 
decision-making process. 

ADNI 

(Ramineni et al., 
2025) 

This study developed a CNN-based framework 
for Alzheimer's disease classification using 
structural MRI data. T1-weighted images were 
processed through a multi-planar analysis 
pipeline, where each volumetric scan was 
segmented into coronal, sagittal, and axial plane 
slices. These orthogonal views were then 
systematically processed through the CNN 
architecture to capture complementary 
neuroanatomical features. 

91% 

Although the model demonstrated accurate 
classification performance, it lacks interpretable 
explainable AI (XAI) techniques to clarify its 
decision-making process. 

ADNI 

(Haq et al., 
2025) 

This study developed a hybrid model 
combining convolutional neural networks 
(CNNs) and long-short-term memory (LSTM) 
networks. The research relied on 505 scans of 
Alzheimer's disease (AD) patients (135), mild 
cognitive impairment (MCI) patients (215), and 
normal individuals (155). The 3D images were 
converted into 2D slices. 

92.3% 

Although the model demonstrated accurate 
classification performance, it lacks interpretable 
explainable AI (XAI) techniques to clarify its 
decision-making process. 

ADNI-1 

(El-Aziz et al., 
2025) 

This research presents a deep learning 
framework for diagnosing Alzheimer's disease 
from MRI. It employs VGG16, MobileNet, and 
InceptionResNetV2 were used with an 
improved weighted fusion mechanism. 

97.93% 

Although the model has high accuracy, it suffers 
from data imbalance (only 64 samples for 
advanced stages compared to 3,200 samples for 
normal stages). Second, the model lacks clear 
mechanisms to explain the basis for case 
classification. 

Kaggle 

(Islam & Uddin, 
2025) This study developed a methodology for 

detecting the four stages of AD using transfer 
learning techniques. The research relied on 
three pre-trained neural network models 
(ResNet50, DenseNet121, and VGG19) 
optimized for the medical classification task. 

97.70% 

This study faces several methodological 
limitations: First, the model lacks interpretable AI 
(XAI) mechanisms, which limits clinicians' ability 
to understand the rationale behind the diagnostic 
decisions made by the model. Second, there is 
significant variation in the sample distribution 
across categories, with only 64 cases of moderate 
dementia compared to a total of 3,200 cases.  

Kaggle 

(Rahman et al., 
2025) 

In this study, a 3D MRI-based model was 
designed to detect Alzheimer's disease. The 
research relied on a dataset comprising 2,182 
scans of 221 patients, divided into three main 
categories: CN, MCI, and AD. A series of 
advanced data processing processes were 
applied, including image refinement of non-
brain tissues, standardization of image anatomy 
parameters, image quality enhancement using 
Gaussian filters, and careful selection of the 
most diagnostically significant segments. 

 

84.05% 

This study faces two major challenges: First, the 
imbalance between classes, with Alzheimer's 
disease (453) patients sampled compared to mild 
cognitive impairment (981), which may affect the 
model's accuracy in classifying underrepresented 
cases. Second, the lack of analysis to interpret the 
model's decisions. 

ADNI 
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Proposed model  

A hybrid deep learning framework that 
combines automated classification with 
clinically interpretable visualization for 
Alzheimer's disease diagnosis is developed. 
Two key architectural innovations to the 
VGG16 baseline (creating N-VGG16) were 
introduced: (1) replacement of traditional 
pooling with generalized average pooling 
(GAP) to preserve spatial relationships in 
neuroimaging data, and (2) integration of Grad-
CAM to generate intuitive heatmaps 
highlighting disease-relevant brain regions. For 
optimal performance, comprehensive 
preprocessing pipeline including CLAHE-
based contrast enhancement and addressed 
class imbalance through SMOTE oversampling 
was implemented. The model was trained with 
early stopping, achieving both high diagnostic 
accuracy and clinically meaningful 
explanations through pathology-aligned visual 
biomarkers. 

99.68% 

This study overcomes the major limitations of 
previous research by developing an integrated 
hybrid model that combines high diagnostic 
accuracy with clinical interpretability. This 
approach relies on several innovative strategies: 
(1) addressing the data imbalance issue through 
artificial augmentation techniques, (2) enhancing 
interpretability by incorporating Grad-CAM 
mechanisms to generate heat maps that highlight 
key diagnostic regions, and (3) achieving a high 
accuracy of 99.6% thanks to structural 
improvements in the enhanced N-VGG16 model. 
The model also demonstrated practical clinical 
applicability with reasonable computational 
requirements. These comprehensive 
improvements provide an integrated solution that 
exceeds the limitations of traditional models in 
terms of accuracy, interpretability, and clinical 
applicability. 

Kaggle 

Conclusion 

This study presents a model for Alzheimer's disease 

(AD) staging using magnetic resonance imaging (MRI). 

The proposed improved N-VGG16 model, enhanced with 

transfer learning capabilities, demonstrates exceptional 

diagnostic reliability with a test accuracy of 99.69%, 

supported by robust training (99.86%) and validation 

(99.98%) results. Grad-CAM imaging ensures the clinical 

interpretability of the model, which accurately identifies 

known biomarkers of AD, including hippocampal atrophy, 

with remarkable anatomical alignment. By combining 

high diagnostic accuracy with transparent decision-

making processes, this framework represents a significant 

advance in neuroscience. Future applications include 

integrating multimodal data (such as PET and 

cerebrospinal fluid biomarkers) and optimizing the model 

for use on portable medical devices. 
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