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Abstract: The rapid growth and widespread adoption of Electric Vehicles
(EVs) play a crucial role in the progress of intelligent transportation systems,
resulting in a significant decrease in environmentally damaging greenhouse
gas emissions. The increase in EV usage has made it crucial to develop
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predicting EV charging demand is crucial to relieve pressure on electricity
systems and offer economical charging options. Simply increasing the
number of charging stations is insufficient, as it puts pressure on power
infrastructure and is constrained by spatial limits. Researchers are currently

working on creating Smart Scheduling Algorithm (SSA) to handle public
charging demand using modeling and optimization methods. There is a
growing interest in using data-driven methods to model EV charging
behaviors. The proposed approach includes preprocessing through
normalization, feature extraction using Independent Component Analysis
(ICA), and performance assessment with the SAE-DNN framework. The
proposed approach compared the method with other two conventional
techniques, DNN and SAE-CNN, to show its effectiveness.

Keywords: Electric Vehicle (EV), Stacked Auto Encoder (SAE), Dense
Neural Network (DNN), State-Of-Charge (SOC), Independent Component
Analysis (ICA), Smart Scheduling Algorithm (SSA)

distribution networks to their limits and increases
expenditures on capacity expansion. In order to
overcome these obstacles, accurate modelling and
forecasting of the EV charging load is essential. For the
most part, the prediction and simulation models in
earlier work have relied on a handful of data mining
algorithms and three primary kinds of datasets.

Introduction

Many governments have established ambitious
goals to combat urban environmental pollution and the
worldwide energy problem, and one direct result of
these goals is the fast growth of EVs around the world.
Several studies have demonstrated that charging a large
number of EVs would result in high power
consumption. This, in turn, increases peak demand and
demand unpredictability, which further pushes
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(1) Information about previous charges from public and
private charging infrastructure, including kilowatt-
hours (kW), state-of-charge (SOC), and other metrics
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and respectively.

(2) Data from traffic networks, geographic information
systems, closed-circuit television, and information on
traffic and travel trajectories, including congestion
index and volume (Alam et al., 2022).

Electric cars (EVs) have seen a meteoric rise in
popularity over the last decade, thanks to lowering CO2
emissions and lower running costs compared to internal
combustion engine (ICE) wvehicles. According to
research, EV might reduce carbon dioxide emissions by
29%. The public may encounter two main challenges
while transitioning to EV: the high price tag and an
absence of accessible charging stations. Among the
primary issues brought up by the researchers is the fact
that there is currently no dependable mechanism in
place for charging electric automobiles. The ever-
increasing global population of EVs poses a new
challenge to the infrastructure that supports
distribution network operators (DNOs). Integration of
EVs, bus voltages, power loss, stability, harmonic
distortion, voltage mismatch, and power efficiency are
only a few of the issues that could lead to high electrical
power demands, which could affect the distribution
network negatively. Furthermore, to support the
growing fleet of EVs, more efficient and reliable EVCS
networks are required (Hasan et al., 2022). Concerns
about carbon dioxide emissions, greenhouse effects,
and the rapid depletion of fossil resources have
accelerated the pressing need to find sustainable,
ecologically friendly alternatives to cars powered by
ICEs. EV have been more popular over the last decade
due to their reduced oil usage and absence of dangerous
fume gas emissions. Damage to lines increases,
distortion  occurs, fault currents, distribution
transformer downturns, and power quality declines as
a result of this strain. One efficient approach to
reducing the impact is to integrate renewable energy
sources (RES) and other forms of local power
generation into the EV charging infrastructure. When
charging batteries, have two options: conductive and
inductive methods. An inductive charger is what makes
up a wireless charging system, or WCS. Can use a static
WCS only when the vehicle is at a complete stop, such
as at a traffic light, in a garage, or in a parking lot, and
a dynamic WCS can be utilized anytime the vehicle is
in motion. The second choice allows charging the
batteries while the vehicle is in motion. Aesthetics,
reliability, durability, and ease of use are a few of
WCS's possible advantages. The forecasting algorithm
is fed the combined hourly intervals of power demand
for EV charging as measured by fast chargers. Data
normalization and cleansing are part of the

preprocessing phase (Hasan & Alam, 2023). Finding
missing data and dealing with outliers is the first step
that significantly depart from the typical range.
Following data cleansing, it is important to normalize
the data within a certain range to ensure the stability of
the gradient-based optimization process. Choosing
appropriate network settings is crucial for optimizing
predicting accuracy. The ideal parameters set is
determined by comparing each experimental
configuration using three evaluation matrices. The
cumulative EV fast-charging power demand is
predicted wusing three separate deep learning
algorithms: SAE-DNN, SAE-CNN, and DNN.

Related Work

Electric vehicle (EV) adoption is accelerating in
response to climate change concerns, yet several barriers
hinder widespread deployment. While the cost gap
between EVs and internal combustion engine vehicles is
narrowing, accurate charging demand forecasting remains
a critical challenge for grid integration and infrastructure
planning. This section reviews existing approaches to EV
charging load forecasting, organized by methodological
approach.

Traditional Machine Learning Approaches

Early work in EV charging demand forecasting
primarily employed classical machine learning
techniques. K. Kumar et al. (2023) developed a charging
load forecasting system using Support Vector Regression
(SVR), demonstrating competitive accuracy for short-
term predictions. Similarly, Mao et al. (2019) proposed a
model for EV charging station short-term load forecasting
that optimized Support Vector Machine (SVM)
parameters using Particle Swarm Optimization (PSO),
achieving improved prediction accuracy. Moorthi et al.
(2023) employed supervised learning to forecast EV
energy consumption using statistical data collected from
vehicle sensors.

Tree-based ensemble methods have also shown
promise for this application. Raghavan (2016) applied
Random Forest (RF) to predict electricity demand from
smart EVs, achieving a mean absolute percentage error of
16%. The study highlighted RF's balance between
prediction accuracy and computational efficiency. Ahmad
et al. (2022) and Wan et al. (2018) explored Bayesian
approaches for handling uncertainties in charging demand
forecasting, with Wan et al. specifically addressing smart
charging issues such as equipment failures.

Deep Learning Methods
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More recent studies have demonstrated that Deep
Learning (DL) models can outperform conventional
approaches for load prediction tasks. Li et al. (2018)
applied Convolutional Neural Networks (CNN) combined
with the Niche Immunity Lion optimization technique for
one-step, short-term EV charging demand forecasting,
obtaining competitive accuracy. Gandhi et al. (2023)
incorporated short-term projections into a hybrid EV
energy management system using deep learning,
demonstrating potential energy efficiency improvements.

Transfer learning has emerged as an effective strategy
when training data is limited. Fukushima et al. (2018)
proposed a transfer learning approach that leverages data
from multiple EV models to construct more robust
prediction models. This technique addresses the challenge
of limited data availability for specific vehicle types.

Ensemble Learning Approaches

Recognizing  that individual models have
complementary strengths, several studies have explored
ensemble learning for improved forecasting performance.
Majidpour et al. (2016) combined three neural network
architectures: an Artificial Neural Network (ANN), a
Recurrent Neural Network (RNN), and a Long Short-
Term Memory (LSTM) network; to forecast demand at
EV charging stations. J. Kumar et al. (2023) compared
four machine learning techniques across two independent
datasets to identify optimal model combinations for EV
charging load prediction.

Sun et al. (2016) proposed using quantile regression
methods, including Quantile Regression Neural
Networks, quantile regression forests, and gradient
boosted regression trees, to predict charging demand at
various locations. Ramkumar et al. (2023) demonstrated
that correlation regularization can improve Neural
Network (NN) load predictor performance by reducing
overfitting.

Reinforcement Learning Applications

Reinforcement Learning (RL) represents a newer
paradigm that can generate control policies without
requiring extensive historical data. This approach is
particularly ~valuable for decision-making under
uncertainty. Huang et al. (2020) applied the Q-learning
algorithm to optimize fast EV charging station operations,
demonstrating potential cost reductions for EV users.
Prasanna Kumara et al. (2023) used RL to determine
optimal charging schedules for EV fleets based on next-
day consumption forecasts.

However, traditional Q-learning faces limitations
when dealing with high-dimensional state and action
spaces, as the action-value matrix becomes
computationally intractable (Buzna et al., 2021). To

address this challenge, researchers have turned to Deep
Reinforcement Learning (DRL), which approximates the
action-value function using deep neural networks. This
approach helps overcome the curse of dimensionality and
eliminates the need for explicit system identification,
which can be difficult in practice (Yadav et al., 2023).

Vandael et al. (2015) employed a data-driven Deep Q-
Network (DQN) approach to develop charging strategies
that account for wvariable electricity pricing and
commuting patterns, demonstrating effective cost
reduction without requiring explicit system models.
Shaarbaf & Ghayeni (2018) reviewed DRL-based
methods for optimizing EV charging schedules, power
electronic controllers, and emergency control under
conditions such as wind power forecast uncertainty.

Research Gaps and Opportunities

Despite these advances, several challenges remain.
Conventional and regular machine learning techniques
may encounter accuracy limitations when forecasting
high-resolution, extremely short-term individual EV
charging loads due to large-scale data requirements,
parameter sensitivity, and substantial uncertainty. Most
existing studies focus on aggregated load forecasting
rather than individual vehicle predictions, and few address
real-time adaptation to rapidly changing conditions.

Furthermore, the integration of renewable energy
sources with EV charging infrastructure introduces
additional forecasting complexities that current methods
do not fully address. Most existing approaches focus on
deterministic forecasting and do not adequately capture
the temporal patterns and variability in individual vehicle
charging behavior.

To address these limitations, we propose a novel
approach that combines Independent Component
Analysis (ICA) with deep learning for EV charging load
(EVCL) pattern extraction and forecasting. Unlike
previous methods that treat charging load as aggregated
demand, our approach identifies and extracts individual
charging patterns at multiple temporal resolutions. The
following sections present our methodology, including
the theoretical foundation of ICA-based preprocessing,
the pattern extraction algorithm, and experimental
validation on multiple real-world datasets.

Proposed System

The core function of this proposed system is the
precise prediction of Electric Vehicle (EV) charging
demand, which is essential for optimizing the power grid
and facilitating future infrastructure expansions.
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Forecasting demand in the short and long term enables
more efficient utilization of existing power resources.

To achieve this, the system utilizes a publicly
accessible dataset to predict EV charging demand. This
dataset, which can be found on Kaggle, is based on a field
experiment conducted by Omar Asensio, tracking 3,395
EV charging sessions from 85 drivers using 105 stations
spread over 25 sites (Gholizadeh, 2024). The details
captured include the total energy utilized, cost, date, and
duration of each session. The use of this public data allows
for reproducible research and validation against real-
world charging behaviors.

Algorithm 1 : Ev CHarging Algorithm with SAE and DNN
Input: Training and Testing dataset
Output: Classification results : Accuracy, Precision, recall and Fi-Score.
1. Step 1: Preprocessing of data
2 dy = normalization(d)
3. End Step
. Step 2: Feature Extraction

Irain the ICA using Train dataset and minimize the reconstruction error

i. End Step

Step 3: Classification

8. The Weights of the latent layer of trained Stacked AutoEncoder is nsed to initialize
the weight of DNN

9. Irain the DNN classifier

10. Testing dataset are input into the trained DNN classificr

End Step

. Return the classification results

Fig. 1. Algorithm 1-EV Charging Algorithm.

ot

The Proposed Model utilizes DNN for EV charging.
The SAE encoder automatically extracts features and
its weights are utilized to initialize the weights of the
hidden layer in the DNN. The activation function
employed in the output layer of the DNN is softmax

(Tang et al., 2020). The test samples are sent into the
trained SAE-DNN classifier to identify EV Charging.
Refer to Fig. 1 for more information.

Charging Behaviour of Electric Vehicles

Let i.,, represent the time when the initially car
plugs in, ig;scon represent the time when the car plugs
out and departs the station, and a represent the amount
of energy given to the car during the session(Shahriar
et al.,, 2021). The proposed approach defines the
charging session behaviour Bg,si0n as follows:

Bsession = (iconr idisconr a) (1)

According to the information provided above, it is
to define the length of a session charging, or the
duration of session, Sy, in the following manner:

Sdur = idiscon - icon (2)

This system aims to forecast the consumption of
energy and duration of a charging session based on an
individual charging record, assuming that the time for
connection is already known.

Fig. 2 displays the flow chart of the suggested
methods. The data set is initially partitioned into a
training set and a testing set in a random manner. The
training set is utilized to train the deep learning
algorithms. The DL algorithm parameters are
optimized using three metaheuristic strategies. Next,
the analysis to determine the ideal number of neurons
in the hidden layer is provided. The suggested models'
predictive performance is demonstrated using several
statistical indices and visual graphics.

Training 70%

EV Charging Data

Preprocessing and
Feature Extraction

-

,UHQQ , Parameters __ .\

SAE-DNN

I

Optimization SAE-ELM

Model Training

Testing 30%

Fig. 2. Proposed Architecture of Electric Vehicle Charging.

& Model
— f\f —  Evaluation
and
Predictions Comparison —» @

Results
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Preprocessing
Normalization

The normalization approach is essential for predicting
problems since it ensures the stability of the training
period optimization procedure. Shortening the time, it
takes to train neural networks and allowing them to
converge optimally are the two main goals of
normalization. The non-convex error surface is kept in a
more spherical form by using an appropriate scaling
strategy, which improves the convergence of gradient-
based optimization algorithms. Without a doubt, the
original dataset could be simply normalized using the
min-max method. And can split the dataset used for this
method into three parts: the training set, the test set, and
the overall dataset (Chang et al., 2021). Additionally, the
dataset can be rescaled to fit within the range of [0, 1],
while still preserving its original scale invariance as
described by equation (3). Due to the vulnerability of the
SAE-DNN recurrent network to data scale, several
research that have focused on time series forecasting
using SAE-DNN have utilized min-max normalization.

d¢—min (d)

Anorm = max(d)—min (d) )
The variable xnorm represents the normalized output
of the supplied sequence d, while d; refers to the t-th
instance of d; . min (d) and max(d) represent the
minimum and maximum values of d, respectively. This
proposed system introduces a novel method called
window sliding min-max normalization, also referred to
as window normalization, as a secondary approach for
estimating charger power consumption for EV. By
utilizing a predetermined window length, window
normalization aims to transform the input data. Because
of this quality, changes to the original data can be made in
short amounts of time.

Feature Extraction

This section presents the general independent
component analysis (ICA) approach. Additionally, an
explanation is provided on how the ICA can be utilized to
extract the stage 2 EVCLs.

Independent Component Analysis (ICA)

Independent Component Analysis (ICA) is a signal
processing technique utilized primarily for blind source
separation. Its goal is to represent a group of observed
random variables as a linear combination of statistically
independent component variables.

In the standard ICA model, the observed signal vector
d = [d4, ..., dy] is assumed to be a linear mixture of $m$
independent random vectors w = [wy,...,wy] . This
relationship is defined by:

d=Ew “)

Where E is the unknown h X j mixing matrix. The
statistical model shown in Equation (4) is referred to as
the ICA model. The independent components (w) are
latent variables that cannot be observed directly. Given
only the random vector d, the method must estimate the
best-case matrices for E and w. This is achieved by
assuming that w consists of non-Gaussian, statistically
independent components.

Assuming the unknown mixing matrix (E’) is a square
matrix, the independent components can be recovered by
estimating the de-mixing inverse matrix (S):

w = Sd %)

To simplify and improve the estimation of the ICA
problem, preprocessing steps such as centering and
whitening are first applied to the data. A key limitation of
the ICA approach is its inability to determine the order or
scale (amplitude and polarity) of the extracted
independent components.

ICA for ECVL Extraction

In this research, the aggregated signal (x) is a
combination of two mixed signals: the combined signal
without the EVCL and the EVCL signal itself. Our goal is
to use the ICA model on the aggregated signal (x) to
determine the EVCL distribution pattern.

While the ICA approach is capable of extracting the
EVCL from the combined load signal, it is not possible to
accurately determine the sign and magnitude of the
retrieved EVCL. This is a result of the uncertainties
inherent in the ICA approach. To achieve this objective,
the classification of EV into certain categories will be
used to determine the magnitude of the extracted EVCL
load signal.

Classification of the Model

Unsupervised feature learning can acquire discerning
and efficient features from a substantial quantity of
unlabeled input. Acquiring labelled vibration signals in
the field of EV chargingis challenging due to the
requirement for particular and extensive experimental
settings. Hence, unsupervised feature learning can offer a
viable resolution for defect diagnostics. In this system, the
proposed approach examines one of the common
unsupervised feature learning methods, known as SAE.
The suggested framework utilizes the SAE in conjunction
with a denoising module to extract features from the
vibration signals. Next, the acquired features are inputted
into a neural network classifier that incorporates dropout.
The intricacies of the framework are depicted in the
subsequent sections. The hybrid model of SAE-DNN
processes feature inputs from EV data providers to
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estimate the cost of healthcare providers. Hyper-
parameter values are crucial in deep learning models as
the system significantly impact the training process and
ultimately determine the model's learning efficiency and
performance. The hyper-parameters for SAE-DNN are
epoch, function of activation, optimizer, batch size, and
function of loss. The number of epochs is set to 70 and the
batch size is 32. ReLU function activation, Optimizer of
Adam, and MSE loss metric are utilized for SAE-DNN.
Following the SAE process, DNN is employed to forecast
the cost estimation of EV providers(Bhatti et al., 2023). A
DNN is composed of numerous layer of hidden and layer
of dense that utilize backpropagation to adjust the
weights, enhancing the accuracy of predicting healthcare
providers. Algorithm 2 outlines the operation of hybrid
SAE-DNN.

Hybrid SAE-DNN

Input: Imput data as D= D71, D°2...D°R
Output: The output L of hybrid SAE-DNN
1. Take D and L from Electric Vehicle Charging dataset
2. Apply Imputation mode on D and L
3. Apply standard scalar normalization on D and L
1. Split the D and L into train and test

SAE Working Mechanism

Input Layer Wi =Dypain and Ligain

~1

. Encoded Layer A; = W}

@

Decoded Layer Xy = A,
Train the EV using SAE and DNN

Pass the output of X, to DNN
. DNN Working Mechanism
Input layer I, = X;
Hidden layer my = Relu(x;s!)

. 8 = Parameter(Size = [z, x4])

5. output layer [ = || — ||2LossFunction

. Hybrid SAE-DNN Mechanism

7. Concatenate the output of SAE and DNN

. Concat = (SAEoutput, DN Noutput)

Train the Hybrid model using SAE and DNN
. Performance Evaluation

Accuracy « Accuracy(lest. lpred)

Precision < Precision(lest. lyrea)

Recall < Recall(lest. lprea)

. Fy = Score & Fy — Score(liests lyrea)

Fig. 3. Algorithm 2 - Flowchart for proposed SAE-DNN
Model.

Smooth 11 regularization with Sparse AutoEncoder
(SAE)

Unsupervised feature learning can acquire discerning
and efficient features from a substantial quantity of
unlabeled input. Acquiring labelled vibration signals in
the field of EV chargingis challenging due to the
requirement for particular and extensive experimental
settings. Hence, unsupervised feature learning can offer a
viable resolution for defect diagnostics. In this system, the
proposed approach examines one of the common

unsupervised feature learning methods, known as SAE.
The suggested framework utilizes the SAE in conjunction
with a denoising module to extract features from the
vibration signals. Next, the acquired features are inputted
into a neural network classifier that incorporates dropout.
The intricacies of the framework are depicted in the
subsequent sections.

In the SAE with smoothed y1 regularisation methods,
the proposed approach are provided with a labelled
training set of m records, which is represented as
{(@P1®),(@P,1®), .., (d, 1)}, The
feature vector, d(t), is a real number that belongs to the
set K/. Every record can be labelled with either a binary
classification [* € {+1, —1} or a multi-classification I* €
{1,2,3, ..., G}, represented 'y’. Assumingly, As a train set,
the labels are removed to yield d;l),dgz),df), ...d;h)
which are unlabeled samples in K/. In order to reduce the
dimensionality of the input training set and produce a
suitable representation, the proposed approach feed
unlabeled training samples dj(,l),dj(,z),df), ...d§,h) €EK’
into the proposed sparse autoencoder model. Using it,
may replicate the training input dataset and learn from it.
Using Sparse autoencoder on unlabeled data xb allowed
us to determine the optimal values for W and b. The
system needs to learn and duplicate its output values

d® d®,4® 4™ e K so that the system match its
input samples dil), d;z), dS), d;h).

input

Input Layer Hidden Laver Output Layer

Fig. 4. Tllustration of SAE Model
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The result will be a new representation with fewer
dimensions, as follows:

{(n{P1®), (mP,1®), .., (m{”, 1)}

The initial input samples are obtained using activation
samples of m that are similar. There is just one procedure
that does both dimensionality reduction and feature
extraction (Jia et al., 2019). During the encoding phase,
the input data d; is converted into the representation of
the hidden components, as demonstrated in Fig. 4.

U=m(SD +p) (6)
D=c(S'u+p) 7

In the given equations, the input data is represented as
a high-dimensional vector D = (d;,d,,ds, ..., dy). The
reconstructed vector of the input data is denoted as D =
(d1,d,, ds, ..., dy). The output from the hidden layer is a
low-dimensional vector U = (mq,m,,ms,...,my) .. In
the above formulation, ¢. represents the activation
function of the neurons in the hidden layers, whereas &
represents the activation function of the neurons in the
output layer. The weight matrices S and S’ correspond to
the encoder and decoder, whereas the bias vectors p and
p' correspond to the receiver and the transmitter,
correspondingly. Input d minus the reconstructed input A
is the reconstruction error function d is calculated using
the Mean Squared Error (MSE) function.

= %l di +d7 ®

The incorporation of smoothed y1 regularization
where ML is concerned. It is difficult to optimize the y1
regularization since it is non-differentiable. The inf-conv
(infimal convolution) method is a new approach to
smoothing data (Narayana Rao et al., 2021). The term of
regularization in maximum penalized likelihood
reconstruction is defined as the infimal convolution of the
first and second-order total variation. An application of a
novel methodology is provided as follows:

=] = Th=r )

|i] — g otherwise

The parameter 7, which is greater than zero, regulates
the similarities between y1 and smoothed y1
regularization. When the value of t is set to 0, it
transforms into y1 regularization. The SAE employs
backpropagation to minimize the cost function, as defined
in Equation (10).

spare(s p) = [ Zt 13 ”mSp(dt) t”2] +§ (10)

wy+1

S S (sD) F eyl Wi (1)

In Equation (11), W(.) represents the function that
can cause sparsity. The mean value of the jth hidden unit's
output is denoted as i,,.

in =2t e (12)

In equation (12), n denotes the output of the nth
hidden unit for the t th input sample. In the
aforementioned sparsity function, the proposed approach
is employing smoothed y1 regularization as an alternative
to the often-utilized KL divergence. Nevertheless, the
proposed system opts for the ReLU (rectified linear unit)
activation function.

q(d) = max(0,d) (13)

The variable e,(f) can only take values between 0 and
1, inclusive. On the entire training set, the average
activation i, of hidden unit n falls within the range of 0 to
1. However, it is important to take into account the
possibility of i being greater than 0. In SAE, sparsity
restrictions are used to control the process of the buried
layer neurons. The sparsity constraints change the error
criterion by inserting a penalty term that quantifies the
divergence from the intended sparsity. This modified
criterion is then used in the backpropagation algorithm,
which also takes into account the sparsity penalty.
Empirical evidence from varying degrees of sparsity
suggests that there is a negative correlation between the
level of sparsity and the types of correlations that can be
recorded pertaining to the data used for training. A higher
level of dispersion has a tendency to capture more
valuable traits.

Deep Neural Network (DNN)

To properly classify multi-class assaults in IDS, the
suggested hybrid approach employs DNN (Deep Neural
Network). One subset of FFNs, called a Multilayer
Perceptron (MLP), is a Deep Neural Network (DNN).
There are more than two levels in a DNN, as opposed to a
standard FFN, which consists of an input layer, an output
layer, and perhaps more hidden layers. Numerous neurons
that are completely linked with neurons in the forward
direction make up each layer. In technical terms, the
model is defined as V: K" x K/. There are z elements in
the input vector d , which are represented
asdq, d,, ds, ..., dy. Included in the output vector V(d) are

j entries. The following is the calculation for the
mathematical definition of each hidden layer p:

ma(@*) = qen + 90 (14)

ey = s (15)

All the neurons in the bottom layer that are linked to
neuron n. In equations (8) and (9), d} represents the
function for activation of neuron t at layer y, and uy,
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represents the contribution of neuron t at layer y to the
neuron activation of n at layer y + 1. The function g
represents the non-linear function activation, whereas
strf‘y ™ denotes the weight and p,(ly D represents the bias
of neuron n. The softmax function is utilized in the
proposed model in order to accomplish multi-class
classification using a non-linear activation function. A
DNN is sometimes referred to as a MLP with several
hidden layers. A DNN often consists of multiple hidden
layers, which can be expressed in the following manner.

M, (d) = M, (My_l (My—2 (- (My(d)))>) (16)

Two hidden layers make up the DNN architecture. The
outputs v = v4,V,, V3, ..., Vg_1, Vg are produced by the
function from the inputs d = dy, d,, ds, ..., dj. It makes
use of a DNN, a traditional FFN that is more
sophisticated. In a DNN, the non-linear function for
activation for each layer of hidden is a ReLU. This non-
linear activation function helps reduce the frequency of
disappearing and exploding gradient problems as
compared to others. Training models with several hidden
layers is made easier by the ReLU function for activation,
which is also more efficient. One of the most important
parameters for getting the best performance is the loss
function. Using a loss function, one can find the difference
between the target and anticipated values. This can be
stated in its simplest form as:

x(i,b) = |li = bll3 O]

The goal is to figure out a close approximation to the
identity of a function. As seen in Equation (11) above, this
learning process entails minimizing the reconstruction
error. In this case, p stands for the desired values and b
for the expected values. The loss function measures how
much the target value differs from the expected value. In
order to determine the loss function and the type of attack,
the model uses the target and the features as inputs. For
the target class, the proposed approach uses the negative
logarithm of the probability, b, and for the predicted
classes, the proposed system uses the probability
distribution, b(bx). The illustration looks like this:

x(i,b(b,x)) = —logh(bx); (18)

The hybrid EVC system comprises two techniques,
namely deep neural networks and sparse auto encoders
can be used. When learning about data representation, the
SAE is used to extract attributes. Convolutional neural
networks then utilize these derived features to do multi-
attack classification.

Result and Discussion

Electric vehicles pose a significant and complex issue
for electricity distribution networks and the overall energy
system. The study explores a new technique that uses a
Sparse AE-DNN model and predict the spatial
distribution of EV. The proposed model utilizes
multilayer socioeconomic input raster data to extract
features, which are then sequenced in strides. The model's
output is a geographical estimation of EV distribution.
Real-world applications like smart grid systems and EV
management software can incorporate the suggested
SAE-DNN paradigm. It allows smart grid systems to
efficiently balance energy loads, optimise resource
distribution, and lessen peak load pressures by accurately
predicting EV charging requests. The model can help EV
management software schedule and route EVs to charging
stations, increasing station utilisation and user
convenience. In order to encourage grid stability and
lower customer prices, the model can also include
dynamic pricing schemes and energy-saving incentives.

Accuracy along with Different Learning Rates

os J —e— SAE-DNN

Accuracy

0.002 0.004 DOIBﬁ 0.008 0.010
Learning Rate
Fig. 5. The accuracy of SAE-softmax varies depending on the
learning rates applied.

The training set is partitioned into five equal segments,
and the optimum parameters are determined using five-
fold cross-validation. For SAE-DNN, the accuracy
reaches its peak at 96.48% when the learning rate is set at
0.05, as shown in Fig. 5.
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Fig. 6. Training Loss shown in MSE
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Fig. 6 displays two crucial curves for every neural
network. The curves show if the training of the neural
networks successfully converges to a minimum Mean
Squared Error (MSE). A noteworthy distinction can be
noted in the minimum Mean Squared Error (MSE)
between the SAE-DNN and the two new neural networks.
DNN and SAE-CNN achieve reduced Mean Squared
Error (MSE) values compared to SAE-DNN. The
distinction between DNN and SAE-CNN is minimal. The
figures demonstrate that all three neural networks
converge correctly for both training and validation losses
without experiencing overfitting or oscillation problems.

Model Accuracy
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Fig. 7. Model Accuracy and Model Loss for the Classification
using SAE-CNN

Fig. 7 illustrates the comparison of training and testing
accuracy and loss for binary data categorization using the
SAE-CNN approach. The SAE-CNN algorithm attained a
training accuracy of 0.96 and a testing accuracy of 0.93.

Fig. 8 displays the training and testing accuracy and
loss comparison for binary categorization of the data
using the DNN method. The DNN algorithm achieved a
training accuracy of 0.89 and a testing accuracy of 0.82.
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Fig. 9 displays the training and testing accuracy and
loss for the binary classification of the data using the
SAE-DNN. The training and testing accuracy of SAE-
CNN are 0.96 and 0.69 higher than DNN and SAE-CNN,
respectively.

Accuracy

W SAE-CNN DNN m SAE-CNN

Fig. 10. Classification Accuracy for the Models

Various solutions need to be created to address issues
such as surpluses and strain when EV are linked to a smart
grid. This occurs only after obtaining the most cost-
effective energy. EV can qualify for discounted electricity
rates based on certain requirements in a particular
location. Price signals are being utilized to deter vehicle
charging in congested areas and generate revenue from
electric car sharing. EV software employs a range of deep
learning algorithms. Fig. 10 displays the classification
accuracy of a Deep Learning classifier.

COMPARISON RESULTS
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Fig. 11. Classification Results for the Models

Fig. 11 display the assessment outcomes of SAE-
CNN, DNN, and SAE-DNN on n test sets, analysing
the classification results using four evaluation metrics:
accuracy, precision, recall, and Fl-score. SAE-DNN
demonstrates an accuracy that is 3.23% and 6.71%
greater than SAE-CNN and DNN, respectively, in the
classifications. The precision, recall rate, and F1-score
have increased by 1.62%, 7.96%, 1.8%, 7.76%, and
2.86%, 6.36%, respectively.

The algorithm might have trouble scaling to bigger
datasets or adjusting to different geographic areas with
different rates of EV adoption and charging habits.
Normalisation and optimisation approaches were
employed to solve computational problems during
training, including managing substantial amounts of
high-dimensional data. However, there may be
drawbacks due to the dependence on preprocessed data
and the possible requirement for retraining on a regular
basis to preserve accuracy. Extending the model's
efficiency and generalisability in other real-world
scenarios may be the focus of future research.

Conclusion

Accurately forecasting the Electric Vehicle
Charging Load (EVCL) has significant implications for
improving power grid stability, optimizing traffic
management, and promoting urban economic
development. Forecasting this demand is challenging
due to the intricate layout of charging infrastructure in
metropolitan areas and the temporally changing nature
of charging patterns.

The methodology proposed in this paper
successfully addresses this difficulty by utilizing a
robust, data-driven  framework  encompassing
preprocessing, feature extraction, and comparative
deep learning model training. The preprocessing stage
employs data cleaning and normalization to ensure the
quality and consistency of input data. Independent
Component Analysis (ICA) is then used for feature
extraction, allowing the model to identify and isolate
important underlying patterns and features from the
raw data.

The methodology is centered on the Stacked
Autoencoder-Deep Neural Network (SAE-DNN)
framework, which is rigorously compared against two
conventional deep learning methods: the standard Deep
Neural Network (DNN) and the Stacked Autoencoder-
Convolutional Neural Network (SAE-CNN). The
proposed SAE-DNN strategy demonstrated superior
performance, achieving a high accuracy rate of
approximately 96.48%.

This high accuracy provides precise long-term
projections of the EV charging load. Such projections
are vital for Distribution Network Operators to
strategically plan energy provision and infrastructure
expansion. Furthermore, this forecasting capability
supports intelligent transportation systems by offering
reliable insights into network usage, allowing drivers
to strategically plan their charging operations,
alleviating concerns about battery depletion, and
enhancing urban traffic flow.
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