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Abstract: The rapid growth and widespread adoption of Electric Vehicles 

(EVs) play a crucial role in the progress of intelligent transportation systems, 

resulting in a significant decrease in environmentally damaging greenhouse 

gas emissions. The increase in EV usage has made it crucial to develop 

charging infrastructure to keep up with the growing demand. Precisely 

predicting EV charging demand is crucial to relieve pressure on electricity 

systems and offer economical charging options. Simply increasing the 

number of charging stations is insufficient, as it puts pressure on power 

infrastructure and is constrained by spatial limits. Researchers are currently 

working on creating Smart Scheduling Algorithm (SSA) to handle public 

charging demand using modeling and optimization methods. There is a 

growing interest in using data-driven methods to model EV charging 

behaviors. The proposed approach includes preprocessing through 

normalization, feature extraction using Independent Component Analysis 

(ICA), and performance assessment with the SAE-DNN framework. The 

proposed approach compared the method with other two conventional 

techniques, DNN and SAE-CNN, to show its effectiveness.  

Keywords: Electric Vehicle (EV), Stacked Auto Encoder (SAE), Dense 

Neural Network (DNN), State-Of-Charge (SOC), Independent Component 

Analysis (ICA), Smart Scheduling Algorithm (SSA) 

 

Introduction  

 Many governments have established ambitious 
goals to combat urban environmental pollution and the 
worldwide energy problem, and one direct result of 
these goals is the fast growth of EVs around the world. 
Several studies have demonstrated that charging a large 
number of EVs would result in high power 
consumption. This, in turn, increases peak demand and 
demand unpredictability, which further pushes 

distribution networks to their limits and increases 
expenditures on capacity expansion. In order to 
overcome these obstacles, accurate modelling and 
forecasting of the EV charging load is essential. For the 
most part, the prediction and simulation models in 
earlier work have relied on a handful of data mining 
algorithms and three primary kinds of datasets.  

(1) Information about previous charges from public and 
private charging infrastructure, including kilowatt-
hours (kW), state-of-charge (SOC), and other metrics 
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and respectively.  

(2) Data from traffic networks, geographic information 

systems, closed-circuit television, and information on 

traffic and travel trajectories, including congestion 

index and volume (Alam et al., 2022).  

Electric cars (EVs) have seen a meteoric rise in 

popularity over the last decade, thanks to lowering CO₂ 

emissions and lower running costs compared to internal 

combustion engine (ICE) vehicles. According to 

research, EV might reduce carbon dioxide emissions by 

29%. The public may encounter two main challenges 

while transitioning to EV: the high price tag and an 

absence of accessible charging stations. Among the 

primary issues brought up by the researchers is the fact 

that there is currently no dependable mechanism in 

place for charging electric automobiles. The ever-

increasing global population of EVs poses a new 

challenge to the infrastructure that supports 

distribution network operators (DNOs). Integration of 

EVs, bus voltages, power loss, stability, harmonic 

distortion, voltage mismatch, and power efficiency are 

only a few of the issues that could lead to high electrical 

power demands, which could affect the distribution 

network negatively. Furthermore, to support the 

growing fleet of EVs, more efficient and reliable EVCS 

networks are required (Hasan et al., 2022). Concerns 

about carbon dioxide emissions, greenhouse effects, 

and the rapid depletion of fossil resources have 

accelerated the pressing need to find sustainable, 

ecologically friendly alternatives to cars powered by 

ICEs. EV have been more popular over the last decade 

due to their reduced oil usage and absence of dangerous 

fume gas emissions. Damage to lines increases, 

distortion occurs, fault currents, distribution 

transformer downturns, and power quality declines as 

a result of this strain. One efficient approach to 

reducing the impact is to integrate renewable energy 

sources (RES) and other forms of local power 

generation into the EV charging infrastructure. When 

charging batteries, have two options: conductive and 

inductive methods. An inductive charger is what makes 

up a wireless charging system, or WCS. Can use a static 

WCS only when the vehicle is at a complete stop, such 

as at a traffic light, in a garage, or in a parking lot, and 

a dynamic WCS can be utilized anytime the vehicle is 

in motion. The second choice allows charging the 

batteries while the vehicle is in motion. Aesthetics, 

reliability, durability, and ease of use are a few of 

WCS's possible advantages. The forecasting algorithm 

is fed the combined hourly intervals of power demand 

for EV charging as measured by fast chargers. Data 

normalization and cleansing are part of the 

preprocessing phase (Hasan & Alam, 2023). Finding 

missing data and dealing with outliers is the first step 

that significantly depart from the typical range. 

Following data cleansing, it is important to normalize 

the data within a certain range to ensure the stability of 

the gradient-based optimization process. Choosing 

appropriate network settings is crucial for optimizing 

predicting accuracy. The ideal parameters set is 

determined by comparing each experimental 

configuration using three evaluation matrices. The 

cumulative EV fast-charging power demand is 

predicted using three separate deep learning 

algorithms: SAE-DNN, SAE-CNN, and DNN. 

Related Work 

Electric vehicle (EV) adoption is accelerating in 

response to climate change concerns, yet several barriers 

hinder widespread deployment. While the cost gap 

between EVs and internal combustion engine vehicles is 

narrowing, accurate charging demand forecasting remains 

a critical challenge for grid integration and infrastructure 

planning. This section reviews existing approaches to EV 

charging load forecasting, organized by methodological 

approach. 

Traditional Machine Learning Approaches 

Early work in EV charging demand forecasting 

primarily employed classical machine learning 

techniques. K. Kumar et al. (2023) developed a charging 

load forecasting system using Support Vector Regression 

(SVR), demonstrating competitive accuracy for short-

term predictions. Similarly, Mao et al. (2019) proposed a 

model for EV charging station short-term load forecasting 

that optimized Support Vector Machine (SVM) 

parameters using Particle Swarm Optimization (PSO), 

achieving improved prediction accuracy. Moorthi et al. 

(2023) employed supervised learning to forecast EV 

energy consumption using statistical data collected from 

vehicle sensors. 

Tree-based ensemble methods have also shown 

promise for this application. Raghavan (2016) applied 

Random Forest (RF) to predict electricity demand from 

smart EVs, achieving a mean absolute percentage error of 

16%. The study highlighted RF's balance between 

prediction accuracy and computational efficiency. Ahmad 

et al. (2022) and Wan et al. (2018) explored Bayesian 

approaches for handling uncertainties in charging demand 

forecasting, with Wan et al. specifically addressing smart 

charging issues such as equipment failures. 

Deep Learning Methods 
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More recent studies have demonstrated that Deep 

Learning (DL) models can outperform conventional 

approaches for load prediction tasks. Li et al. (2018) 

applied Convolutional Neural Networks (CNN) combined 

with the Niche Immunity Lion optimization technique for 

one-step, short-term EV charging demand forecasting, 

obtaining competitive accuracy. Gandhi et al. (2023) 

incorporated short-term projections into a hybrid EV 

energy management system using deep learning, 

demonstrating potential energy efficiency improvements. 

Transfer learning has emerged as an effective strategy 

when training data is limited. Fukushima et al. (2018) 

proposed a transfer learning approach that leverages data 

from multiple EV models to construct more robust 

prediction models. This technique addresses the challenge 

of limited data availability for specific vehicle types. 

Ensemble Learning Approaches 

Recognizing that individual models have 

complementary strengths, several studies have explored 

ensemble learning for improved forecasting performance. 

Majidpour et al. (2016) combined three neural network 

architectures: an Artificial Neural Network (ANN), a 

Recurrent Neural Network (RNN), and a Long Short-

Term Memory (LSTM) network; to forecast demand at 

EV charging stations. J. Kumar et al. (2023) compared 

four machine learning techniques across two independent 

datasets to identify optimal model combinations for EV 

charging load prediction. 

Sun et al. (2016) proposed using quantile regression 

methods, including Quantile Regression Neural 

Networks, quantile regression forests, and gradient 

boosted regression trees, to predict charging demand at 

various locations. Ramkumar et al. (2023) demonstrated 

that correlation regularization can improve Neural 

Network (NN) load predictor performance by reducing 

overfitting. 

Reinforcement Learning Applications 

Reinforcement Learning (RL) represents a newer 

paradigm that can generate control policies without 

requiring extensive historical data. This approach is 

particularly valuable for decision-making under 

uncertainty. Huang et al. (2020) applied the Q-learning 

algorithm to optimize fast EV charging station operations, 

demonstrating potential cost reductions for EV users. 

Prasanna Kumara et al. (2023) used RL to determine 

optimal charging schedules for EV fleets based on next-

day consumption forecasts. 

However, traditional Q-learning faces limitations 

when dealing with high-dimensional state and action 

spaces, as the action-value matrix becomes 

computationally intractable (Buzna et al., 2021). To 

address this challenge, researchers have turned to Deep 

Reinforcement Learning (DRL), which approximates the 

action-value function using deep neural networks. This 

approach helps overcome the curse of dimensionality and 

eliminates the need for explicit system identification, 

which can be difficult in practice (Yadav et al., 2023). 

Vandael et al. (2015) employed a data-driven Deep Q-

Network (DQN) approach to develop charging strategies 

that account for variable electricity pricing and 

commuting patterns, demonstrating effective cost 

reduction without requiring explicit system models. 

Shaarbaf & Ghayeni (2018) reviewed DRL-based 

methods for optimizing EV charging schedules, power 

electronic controllers, and emergency control under 

conditions such as wind power forecast uncertainty. 

Research Gaps and Opportunities 

Despite these advances, several challenges remain. 

Conventional and regular machine learning techniques 

may encounter accuracy limitations when forecasting 

high-resolution, extremely short-term individual EV 

charging loads due to large-scale data requirements, 

parameter sensitivity, and substantial uncertainty. Most 

existing studies focus on aggregated load forecasting 

rather than individual vehicle predictions, and few address 

real-time adaptation to rapidly changing conditions. 

Furthermore, the integration of renewable energy 

sources with EV charging infrastructure introduces 

additional forecasting complexities that current methods 

do not fully address. Most existing approaches focus on 

deterministic forecasting and do not adequately capture 

the temporal patterns and variability in individual vehicle 

charging behavior. 

To address these limitations, we propose a novel 

approach that combines Independent Component 

Analysis (ICA) with deep learning for EV charging load 

(EVCL) pattern extraction and forecasting. Unlike 

previous methods that treat charging load as aggregated 

demand, our approach identifies and extracts individual 

charging patterns at multiple temporal resolutions. The 

following sections present our methodology, including 

the theoretical foundation of ICA-based preprocessing, 

the pattern extraction algorithm, and experimental 

validation on multiple real-world datasets. 

Proposed System 

The core function of this proposed system is the 

precise prediction of Electric Vehicle (EV) charging 

demand, which is essential for optimizing the power grid 

and facilitating future infrastructure expansions. 
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Forecasting demand in the short and long term enables 

more efficient utilization of existing power resources. 

To achieve this, the system utilizes a publicly 

accessible dataset to predict EV charging demand. This 

dataset, which can be found on Kaggle, is based on a field 

experiment conducted by Omar Asensio, tracking 3,395 

EV charging sessions from 85 drivers using 105 stations 

spread over 25 sites (Gholizadeh, 2024). The details 

captured include the total energy utilized, cost, date, and 

duration of each session. The use of this public data allows 

for reproducible research and validation against real-

world charging behaviors. 

 

Fig. 1. Algorithm 1-EV Charging Algorithm. 
 

The Proposed Model utilizes DNN for EV charging. 

The SAE encoder automatically extracts features and 

its weights are utilized to initialize the weights of the 

hidden layer in the DNN. The activation function 

employed in the output layer of the DNN is softmax 

(Tang et al., 2020). The test samples are sent into the 

trained SAE-DNN classifier to identify EV Charging. 

Refer to Fig. 1 for more information. 

Charging Behaviour of Electric Vehicles 

Let 𝑖𝑐𝑜𝑛  represent the time when the initially car 

plugs in, 𝑖𝑑𝑖𝑠𝑐𝑜𝑛 represent the time when the car plugs 

out and departs the station, and 𝑎 represent the amount 

of energy given to the car during the session(Shahriar 

et al., 2021). The proposed approach defines the 

charging session behaviour 𝐵𝑠𝑒𝑠𝑠𝑖𝑜𝑛 as follows: 

𝐵𝑠𝑒𝑠𝑠𝑖𝑜𝑛 ≜  (𝑖𝑐𝑜𝑛, 𝑖𝑑𝑖𝑠𝑐𝑜𝑛, 𝑎)  (1) 

According to the information provided above, it is 

to define the length of a session charging, or the 

duration of session, 𝑆𝑑𝑢𝑟 , in the following manner: 

𝑆𝑑𝑢𝑟 = 𝑖𝑑𝑖𝑠𝑐𝑜𝑛 − 𝑖𝑐𝑜𝑛   (2) 

This system aims to forecast the consumption of 

energy and duration of a charging session based on an 

individual charging record, assuming that the time for 

connection is already known. 

Fig. 2 displays the flow chart of the suggested 

methods. The data set is initially partitioned into a 

training set and a testing set in a random manner. The 

training set is utilized to train the deep learning 

algorithms. The DL algorithm parameters are 

optimized using three metaheuristic strategies. Next, 

the analysis to determine the ideal number of neurons 

in the hidden layer is provided. The suggested models' 

predictive performance is demonstrated using several 

statistical indices and visual graphics.

 

 

Fig. 2. Proposed Architecture of Electric Vehicle Charging.
Results 
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Preprocessing 

Normalization 

The normalization approach is essential for predicting 

problems since it ensures the stability of the training 

period optimization procedure. Shortening the time, it 

takes to train neural networks and allowing them to 

converge optimally are the two main goals of 

normalization. The non-convex error surface is kept in a 

more spherical form by using an appropriate scaling 

strategy, which improves the convergence of gradient-

based optimization algorithms. Without a doubt, the 

original dataset could be simply normalized using the 

min-max method. And can split the dataset used for this 

method into three parts: the training set, the test set, and 

the overall dataset (Chang et al., 2021). Additionally, the 

dataset can be rescaled to fit within the range of [0, 1], 

while still preserving its original scale invariance as 

described by equation (3). Due to the vulnerability of the 

SAE-DNN recurrent network to data scale, several 

research that have focused on time series forecasting 

using SAE-DNN have utilized min-max normalization. 

𝑑𝑛𝑜𝑟𝑚 =   
𝑑𝑡−min (𝑑)

max(𝑑)−min (𝑑)
  (3) 

The variable xnorm represents the normalized output 

of the supplied sequence 𝑑, while 𝑑; refers to the 𝑡-th 

instance of 𝑑𝑡  . min (𝑑)  and max(𝑑)  represent the 

minimum and maximum values of 𝑑, respectively. This 

proposed system introduces a novel method called 

window sliding min-max normalization, also referred to 

as window normalization, as a secondary approach for 

estimating charger power consumption for EV. By 

utilizing a predetermined window length, window 

normalization aims to transform the input data. Because 

of this quality, changes to the original data can be made in 

short amounts of time. 

Feature Extraction 

This section presents the general independent 

component analysis (ICA) approach. Additionally, an 

explanation is provided on how the ICA can be utilized to 

extract the stage 2 EVCLs. 

Independent Component Analysis (ICA) 

Independent Component Analysis (ICA) is a signal 

processing technique utilized primarily for blind source 

separation. Its goal is to represent a group of observed 

random variables as a linear combination of statistically 

independent component variables. 

In the standard ICA model, the observed signal vector 

𝑑 = [𝑑1, … , 𝑑ℎ] is assumed to be a linear mixture of $m$ 

independent random vectors 𝑤 = [𝑤1, … , 𝑤ℎ] . This 

relationship is defined by: 

𝑑 = 𝐸𝑤     (4) 

Where 𝐸  is the unknown ℎ × 𝑗  mixing matrix. The 

statistical model shown in Equation (4) is referred to as 

the ICA model. The independent components (𝑤)  are 

latent variables that cannot be observed directly. Given 

only the random vector 𝑑, the method must estimate the 

best-case matrices for 𝐸  and 𝑤 . This is achieved by 

assuming that 𝑤  consists of non-Gaussian, statistically 

independent components. 

Assuming the unknown mixing matrix (𝐸) is a square 

matrix, the independent components can be recovered by 

estimating the de-mixing inverse matrix (𝑆): 

𝑤 = 𝑆𝑑    (5) 

To simplify and improve the estimation of the ICA 

problem, preprocessing steps such as centering and 

whitening are first applied to the data. A key limitation of 

the ICA approach is its inability to determine the order or 

scale (amplitude and polarity) of the extracted 

independent components. 

ICA for ECVL Extraction 

In this research, the aggregated signal (𝑥)  is a 

combination of two mixed signals: the combined signal 

without the EVCL and the EVCL signal itself. Our goal is 

to use the ICA model on the aggregated signal (𝑥)  to 

determine the EVCL distribution pattern. 

While the ICA approach is capable of extracting the 

EVCL from the combined load signal, it is not possible to 

accurately determine the sign and magnitude of the 

retrieved EVCL. This is a result of the uncertainties 

inherent in the ICA approach. To achieve this objective, 

the classification of EV into certain categories will be 

used to determine the magnitude of the extracted EVCL 

load signal. 

Classification of the Model 

Unsupervised feature learning can acquire discerning 

and efficient features from a substantial quantity of 

unlabeled input. Acquiring labelled vibration signals in 

the field of EV charging is challenging due to the 

requirement for particular and extensive experimental 

settings. Hence, unsupervised feature learning can offer a 

viable resolution for defect diagnostics. In this system, the 

proposed approach examines one of the common 

unsupervised feature learning methods, known as SAE. 

The suggested framework utilizes the SAE in conjunction 

with a denoising module to extract features from the 

vibration signals. Next, the acquired features are inputted 

into a neural network classifier that incorporates dropout. 

The intricacies of the framework are depicted in the 

subsequent sections. The hybrid model of SAE-DNN 

processes feature inputs from EV data providers to 



Naga Raju Hari Manikyam et al. / Journal of Computer Science 2025, 21 (10): 2400-2411 
DOI: 10.3844/jcssp.2025.2400.2411 

 

2405 

estimate the cost of healthcare providers. Hyper-

parameter values are crucial in deep learning models as 

the system significantly impact the training process and 

ultimately determine the model's learning efficiency and 

performance. The hyper-parameters for SAE-DNN are 

epoch, function of activation, optimizer, batch size, and 

function of loss. The number of epochs is set to 70 and the 

batch size is 32. ReLU function activation, Optimizer of 

Adam, and MSE loss metric are utilized for SAE-DNN. 

Following the SAE process, DNN is employed to forecast 

the cost estimation of EV providers(Bhatti et al., 2023). A 

DNN is composed of numerous layer of hidden and layer 

of dense that utilize backpropagation to adjust the 

weights, enhancing the accuracy of predicting healthcare 

providers. Algorithm 2 outlines the operation of hybrid 

SAE-DNN. 

 

Fig. 3. Algorithm 2 - Flowchart for proposed SAE-DNN 

Model. 

Smooth 𝑙1 regularization with Sparse AutoEncoder 

(SAE) 

Unsupervised feature learning can acquire discerning 

and efficient features from a substantial quantity of 

unlabeled input. Acquiring labelled vibration signals in 

the field of EV charging is challenging due to the 

requirement for particular and extensive experimental 

settings. Hence, unsupervised feature learning can offer a 

viable resolution for defect diagnostics. In this system, the 

proposed approach examines one of the common 

unsupervised feature learning methods, known as SAE. 

The suggested framework utilizes the SAE in conjunction 

with a denoising module to extract features from the 

vibration signals. Next, the acquired features are inputted 

into a neural network classifier that incorporates dropout. 

The intricacies of the framework are depicted in the 

subsequent sections. 

In the SAE with smoothed 𝑦1 regularisation methods, 

the proposed approach are provided with a labelled 

training set of m records, which is represented as 

{(𝑑𝑦
(1)

, 𝑙(1)), (𝑑𝑦
(2)

, 𝑙(2)), … , (𝑑𝑦
(ℎ)

, 𝑙(ℎ))}.  The input 

feature vector, 𝑑(𝑡), is a real number that belongs to the 

set 𝐾𝑗. Every record can be labelled with either a binary 

classification 𝑙𝑡 ∈ {+1, −1} or a multi-classification 𝑙𝑡 ∈
{1,2,3, … , 𝐺}, represented ′𝑦′. Assumingly, As a train set, 

the labels are removed to yield 𝑑𝑧
(1)

, 𝑑𝑧
(2)

, 𝑑𝑧
(3)

, … 𝑑𝑧
(ℎ)

 

which are unlabeled samples in 𝐾𝑗. In order to reduce the 

dimensionality of the input training set and produce a 

suitable representation, the proposed approach feed 

unlabeled training samples 𝑑𝑦
(1)

, 𝑑𝑦
(2)

, 𝑑𝑦
(3)

, … 𝑑𝑦
(ℎ)

∈ 𝐾𝑗 

into the proposed sparse autoencoder model. Using it, 

may replicate the training input dataset and learn from it. 

Using Sparse autoencoder on unlabeled data 𝑥𝑏 allowed 

us to determine the optimal values for W and b. The 

system needs to learn and duplicate its output values 

𝑑̂𝑧
(1)

, 𝑑̂𝑧
(2)

, 𝑑̂𝑧
(3)

, … 𝑑̂𝑧
(ℎ)

∈ 𝐾𝑗 so that the system match its 

input samples 𝑑𝑧
(1)

, 𝑑𝑧
(2)

, 𝑑𝑧
(3)

, … 𝑑𝑧
(ℎ)

.  

 

 

Fig. 4. Illustration of SAE Model 
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The result will be a new representation with fewer 

dimensions, as follows: 

{(𝑚𝑦
(1)

, 𝑙(1)), (𝑚𝑦
(2)

, 𝑙(2)), … , (𝑚𝑦
(ℎ)

, 𝑙(ℎ))} 

The initial input samples are obtained using activation 

samples of 𝑚 that are similar. There is just one procedure 

that does both dimensionality reduction and feature 

extraction (Jia et al., 2019). During the encoding phase, 

the input data 𝑑𝑡  is converted into the representation of 

the hidden components, as demonstrated in Fig. 4. 

𝑈 = 𝑚(𝑆𝐷 + 𝑝)   (6) 

𝐷̂ = 𝑐(𝑆′𝑢 + 𝑝′)   (7) 

In the given equations, the input data is represented as 

a high-dimensional vector 𝐷 = (𝑑1, 𝑑2, 𝑑3, … , 𝑑ℎ) . The 

reconstructed vector of the input data is denoted as 𝐷̂ =

(𝑑̂1, 𝑑̂2, 𝑑̂3, … , 𝑑̂ℎ). The output from the hidden layer is a 

low-dimensional vector 𝑈 = (𝑚1, 𝑚2, 𝑚3, … , 𝑚ℎ) .. In 

the above formulation, 𝑐 .  represents the activation 

function of the neurons in the hidden layers, whereas ℎ 

represents the activation function of the neurons in the 

output layer. The weight matrices 𝑆 and 𝑆′ correspond to 

the encoder and decoder, whereas the bias vectors 𝑝 and 

𝑝′  correspond to the receiver and the transmitter, 

correspondingly. Input 𝑑 minus the reconstructed input 𝐴 

is the reconstruction error function 𝑑̂ is calculated using 

the Mean Squared Error (MSE) function. 

𝐴 =
1

𝐽
∑ 𝑑𝑡 + 𝑑𝑡

′2𝐽
𝑡=1    (8) 

The incorporation of smoothed 𝑦1  regularization 

where ML is concerned. It is difficult to optimize the 𝑦1 

regularization since it is non-differentiable. The inf-conv 

(infimal convolution) method is a new approach to 

smoothing data (Narayana Rao et al., 2021). The term of 

regularization in maximum penalized likelihood 

reconstruction is defined as the infimal convolution of the 

first and second-order total variation. An application of a 

novel methodology is provided as follows: 

 𝑐𝑧(𝑖) = {

𝑖2

2𝜏
, 𝑖𝑓 |𝑖|  ≤ 𝜏

|𝑖| −
𝜏

2
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (9) 

The parameter 𝜏, which is greater than zero, regulates 

the similarities between 𝑦1  and smoothed 𝑦1 

regularization. When the value of 𝜏   is set to 0, it 

transforms into 𝑦1  regularization. The SAE employs 

backpropagation to minimize the cost function, as defined 

in Equation (10). 

𝑁𝑠𝑝𝑎𝑟𝑒(𝑆, 𝑝) = [
1

𝐽
∑

1

2
‖𝑚𝑆,𝑝(𝑑𝑡) − 𝑑𝑡̂‖

2𝐽
𝑡=1 ] +

𝛿

2
   (10) 

∑ ∑ ∑ (𝑆𝑛𝑡
(𝑦)

)
2

+ 𝛼 ∑ 𝑊(𝑖𝑛)𝑗
𝑛=1

𝑤𝑦+1

𝑛=1

𝑤𝑦

𝑡=1

 𝑗𝑦−1

𝑦=1    (11) 

In Equation (11), 𝑊(. ) represents the function that 

can cause sparsity. The mean value of the jth hidden unit's 

output is denoted as 𝑖𝑛. 

𝑖𝑛 =
1

ℎ
∑ 𝑒𝑛

(𝑡)ℎ
𝑡=1   (12) 

In equation (12), 𝑛  denotes the output of the 𝑛 th 

hidden unit for the 𝑡 th input sample. In the 

aforementioned sparsity function, the proposed approach 

is employing smoothed 𝑦1 regularization as an alternative 

to the often-utilized KL divergence. Nevertheless, the 

proposed system opts for the ReLU (rectified linear unit) 

activation function. 

𝑞(𝑑) = max(0, 𝑑)  (13) 

The variable 𝑒𝑛
(𝑡)

 can only take values between 0 and 

1, inclusive. On the entire training set, the average 

activation 𝑖𝑛 of hidden unit 𝑛 falls within the range of 0 to 

1. However, it is important to take into account the 

possibility of 𝑖  being greater than 0. In SAE, sparsity 

restrictions are used to control the process of the buried 

layer neurons. The sparsity constraints change the error 

criterion by inserting a penalty term that quantifies the 

divergence from the intended sparsity. This modified 

criterion is then used in the backpropagation algorithm, 

which also takes into account the sparsity penalty. 

Empirical evidence from varying degrees of sparsity 

suggests that there is a negative correlation between the 

level of sparsity and the types of correlations that can be 

recorded pertaining to the data used for training. A higher 

level of dispersion has a tendency to capture more 

valuable traits. 

Deep Neural Network (DNN) 

To properly classify multi-class assaults in IDS, the 

suggested hybrid approach employs DNN (Deep Neural 

Network). One subset of FFNs, called a Multilayer 

Perceptron (MLP), is a Deep Neural Network (DNN). 

There are more than two levels in a DNN, as opposed to a 

standard FFN, which consists of an input layer, an output 

layer, and perhaps more hidden layers. Numerous neurons 

that are completely linked with neurons in the forward 

direction make up each layer. In technical terms, the 

model is defined as 𝑉: 𝐾ℎ × 𝐾𝑗. There are 𝑧 elements in 

the input vector 𝑑 , which are represented 

as𝑑1, 𝑑2, 𝑑3, … , 𝑑ℎ. Included in the output vector 𝑉(𝑑) are 

𝑗  entries. The following is the calculation for the 

mathematical definition of each hidden layer 𝑝: 

𝑚𝑛(𝑑𝑛
𝑦+1

) = 𝑞(𝑢𝑡𝑛 + 𝑝𝑛
(𝑦+1)

)  (14) 

𝑢𝑡𝑛 = 𝑑𝑡
𝑦𝑠𝑡𝑛

(𝑦,𝑦+1)
   (15) 

All the neurons in the bottom layer that are linked to 

neuron 𝑛 . In equations (8) and (9), 𝑑𝑡
𝑦

 represents the 

function for activation of neuron 𝑡  at layer 𝑦 , and 𝑢𝑡𝑛 
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represents the contribution of neuron 𝑡 at layer 𝑦 to the 

neuron activation of 𝑛  at layer 𝑦 + 1 . The function 𝑞 

represents the non-linear function activation, whereas 

𝑠𝑡𝑛
(𝑦,𝑦+1)

 denotes the weight and 𝑝𝑛
(𝑦+1)

 represents the bias 

of neuron 𝑛 . The softmax function is utilized in the 

proposed model in order to accomplish multi-class 

classification using a non-linear activation function. A 

DNN is sometimes referred to as a MLP with several 

hidden layers. A DNN often consists of multiple hidden 

layers, which can be expressed in the following manner. 

𝑀𝑦(𝑑) = 𝑀𝑦 (𝑀𝑦−1 (𝑀𝑦−2 (… (𝑀𝑦(𝑑)))))     (16) 

Two hidden layers make up the DNN architecture. The 

outputs 𝑣 = 𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑔−1, 𝑣𝑔  are produced by the 

function from the inputs 𝑑 = 𝑑1, 𝑑2, 𝑑3, … , 𝑑ℎ . It makes 

use of a DNN, a traditional FFN that is more 

sophisticated. In a DNN, the non-linear function for 

activation for each layer of hidden is a ReLU. This non-

linear activation function helps reduce the frequency of 

disappearing and exploding gradient problems as 

compared to others. Training models with several hidden 

layers is made easier by the ReLU function for activation, 

which is also more efficient. One of the most important 

parameters for getting the best performance is the loss 

function. Using a loss function, one can find the difference 

between the target and anticipated values. This can be 

stated in its simplest form as: 

𝑥(𝑖, 𝑏) = ‖𝑖 − 𝑏‖2
2  (17) 

The goal is to figure out a close approximation to the 

identity of a function. As seen in Equation (11) above, this 

learning process entails minimizing the reconstruction 

error. In this case, 𝑝 stands for the desired values and 𝑏 

for the expected values. The loss function measures how 

much the target value differs from the expected value. In 

order to determine the loss function and the type of attack, 

the model uses the target and the features as inputs. For 

the target class, the proposed approach uses the negative 

logarithm of the probability, 𝑏, and for the predicted 

classes, the proposed system uses the probability 

distribution, 𝑏(𝑏𝑥). The illustration looks like this:  

𝑥(𝑖, 𝑏(𝑏, 𝑥)) = −𝑙𝑜𝑔𝑏(𝑏𝑥)𝑖  (18) 

The hybrid EVC system comprises two techniques, 

namely deep neural networks and sparse auto encoders 

can be used. When learning about data representation, the 

SAE is used to extract attributes. Convolutional neural 

networks then utilize these derived features to do multi-

attack classification. 

Result and Discussion 

Electric vehicles pose a significant and complex issue 

for electricity distribution networks and the overall energy 

system. The study explores a new technique that uses a 

Sparse AE-DNN model and predict the spatial 

distribution of EV. The proposed model utilizes 

multilayer socioeconomic input raster data to extract 

features, which are then sequenced in strides. The model's 

output is a geographical estimation of EV distribution. 

Real-world applications like smart grid systems and EV 

management software can incorporate the suggested 

SAE-DNN paradigm. It allows smart grid systems to 

efficiently balance energy loads, optimise resource 

distribution, and lessen peak load pressures by accurately 

predicting EV charging requests. The model can help EV 

management software schedule and route EVs to charging 

stations, increasing station utilisation and user 

convenience. In order to encourage grid stability and 

lower customer prices, the model can also include 

dynamic pricing schemes and energy-saving incentives. 

 

Fig. 5. The accuracy of SAE-softmax varies depending on the 

learning rates applied. 

The training set is partitioned into five equal segments, 

and the optimum parameters are determined using five-

fold cross-validation. For SAE-DNN, the accuracy 

reaches its peak at 96.48% when the learning rate is set at 

0.05, as shown in Fig. 5. 

 

Fig. 6. Training Loss shown in MSE 
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Fig. 6 displays two crucial curves for every neural 

network. The curves show if the training of the neural 

networks successfully converges to a minimum Mean 

Squared Error (MSE). A noteworthy distinction can be 

noted in the minimum Mean Squared Error (MSE) 

between the SAE-DNN and the two new neural networks. 

DNN and SAE-CNN achieve reduced Mean Squared 

Error (MSE) values compared to SAE-DNN. The 

distinction between DNN and SAE-CNN is minimal. The 

figures demonstrate that all three neural networks 

converge correctly for both training and validation losses 

without experiencing overfitting or oscillation problems. 

 

 

Fig. 7. Model Accuracy and Model Loss for the Classification 

using SAE-CNN 

Fig. 7 illustrates the comparison of training and testing 

accuracy and loss for binary data categorization using the 

SAE-CNN approach. The SAE-CNN algorithm attained a 

training accuracy of 0.96 and a testing accuracy of 0.93. 

Fig. 8 displays the training and testing accuracy and 

loss comparison for binary categorization of the data 

using the DNN method. The DNN algorithm achieved a 

training accuracy of 0.89 and a testing accuracy of 0.82. 

 

 

Fig. 8. Model Accuracy and Model Loss for the Classification 

using DNN 

 

 

Fig. 9. Model Accuracy and Model Loss for the Classification 

using SAE-DNN 
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Fig. 9 displays the training and testing accuracy and 

loss for the binary classification of the data using the 

SAE-DNN. The training and testing accuracy of SAE-

CNN are 0.96 and 0.69 higher than DNN and SAE-CNN, 

respectively. 

 

Fig. 10. Classification Accuracy for the Models 

Various solutions need to be created to address issues 

such as surpluses and strain when EV are linked to a smart 

grid. This occurs only after obtaining the most cost-

effective energy. EV can qualify for discounted electricity 

rates based on certain requirements in a particular 

location. Price signals are being utilized to deter vehicle 

charging in congested areas and generate revenue from 

electric car sharing. EV software employs a range of deep 

learning algorithms. Fig. 10 displays the classification 

accuracy of a Deep Learning classifier. 

 

Fig. 11. Classification Results for the Models 

Fig. 11 display the assessment outcomes of SAE-

CNN, DNN, and SAE-DNN on n test sets, analysing 

the classification results using four evaluation metrics: 

accuracy, precision, recall, and F1-score. SAE-DNN 

demonstrates an accuracy that is 3.23% and 6.71% 

greater than SAE-CNN and DNN, respectively, in the 

classifications. The precision, recall rate, and F1-score 

have increased by 1.62%, 7.96%, 1.8%, 7.76%, and 

2.86%, 6.36%, respectively. 

The algorithm might have trouble scaling to bigger 

datasets or adjusting to different geographic areas with 

different rates of EV adoption and charging habits. 

Normalisation and optimisation approaches were 

employed to solve computational problems during 

training, including managing substantial amounts of 

high-dimensional data. However, there may be 

drawbacks due to the dependence on preprocessed data 

and the possible requirement for retraining on a regular 

basis to preserve accuracy. Extending the model's 

efficiency and generalisability in other real-world 

scenarios may be the focus of future research. 

Conclusion 

Accurately forecasting the Electric Vehicle 

Charging Load (EVCL) has significant implications for 

improving power grid stability, optimizing traffic 

management, and promoting urban economic 

development. Forecasting this demand is challenging 

due to the intricate layout of charging infrastructure in 

metropolitan areas and the temporally changing nature 

of charging patterns. 

The methodology proposed in this paper 

successfully addresses this difficulty by utilizing a 

robust, data-driven framework encompassing 

preprocessing, feature extraction, and comparative 

deep learning model training. The preprocessing stage 

employs data cleaning and normalization to ensure the 

quality and consistency of input data. Independent 

Component Analysis (ICA) is then used for feature 

extraction, allowing the model to identify and isolate 

important underlying patterns and features from the 

raw data. 

The methodology is centered on the Stacked 

Autoencoder-Deep Neural Network (SAE-DNN) 

framework, which is rigorously compared against two 

conventional deep learning methods: the standard Deep 

Neural Network (DNN) and the Stacked Autoencoder-

Convolutional Neural Network (SAE-CNN). The 

proposed SAE-DNN strategy demonstrated superior 

performance, achieving a high accuracy rate of 

approximately 96.48%. 

This high accuracy provides precise long-term 

projections of the EV charging load. Such projections 

are vital for Distribution Network Operators to 

strategically plan energy provision and infrastructure 

expansion. Furthermore, this forecasting capability 

supports intelligent transportation systems by offering 

reliable insights into network usage, allowing drivers 

to strategically plan their charging operations, 

alleviating concerns about battery depletion, and 

enhancing urban traffic flow. 
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